
Meta-Programming with Typed Object-language

Representations

Emir Pašalić and Nathan Linger

OGI School of Science & Engineering

Oregon Health & Science University

{pasalic,rlinger}@cse.ogi.edu
⋆

Abstract. We present two case studies demonstrating the use of type-
equality constraints in a meta-language to enforce semantic invariants of
object-language programs such as scoping and typing rules. We apply this
technique to several interesting problems, including (1) the construction
of tagless interpreters; (2) statically checking de Bruijn indices involving
pattern-based binding constructs; and (3) evolving embedded DSL im-
plementations to include domain-specific types and optimizations that
respect those types.

1 Introduction

Meta-programs manipulate object-programs as data. Traditionally, these object-
programs are represented with algebraic datatypes that enforce syntactic invari-
ants of the object-language: only syntactically valid object programs are repre-
sentable. In this paper, we explore a method for object-program representation
that also enforces the semantic invariants of scoping and typing rules. The type
system of the meta-language then guarantees that all meta-programs respect
these additional object-language properties, thereby increasing our assurance in
the correctness of meta-programs.

Although this can be done using an encoding of equality types in (standard
extensions to) the Haskell 98 type system, the meta-language Ωmega [?] that we
use in this paper directly supports the notion of type equality. Its type system
automatically propagates and solves type-equality constraints, thus implement-
ing a form of Cheney and Hinze’s First Class Phantom Types [?]. Our case
studies show that such support from the type system makes programming with
well-typed object programs considerably less tedious than explicitly encoding
equality types. Ωmega also supports user-defined kinds and staging. This inte-
gration of features makes Ωmega a powerful meta-programming tool.

In this paper, we apply this new meta-programming approach to several in-
teresting problems: (1) the construction of tagless interpreters; (2) statically
checking de Bruijn indices involving pattern-based binding constructs; and (3)

⋆ The work described in this paper is supported by the National Science Foundation
under the grant CCR-0098126.

evolving embedded DSL implementations to include domain-specific types and
optimizations that respect those types.

Our case studies demonstrate that these techniques support the embedding of
the logical frameworks style of judgments into a programming language such as
Haskell. This is important because it allows programmers to reason about their
programs as they write them rather than separately at the meta-logical level.

Tagless Staged Interpreters. Staging a definitional interpreter written in
a staged language (e.g. MetaML) is one way of deriving an implementation that
is both reliable and efficient [?]: reliable because the staged interpreter retains a
close link with the original (reference) interpreter, and efficient because staging
can remove an entire layer of interpretive overhead, thereby yielding a simple
compiler.

However, many existing staged interpreter implementations retain at least
one significant source of overhead: tagging [?]. Unnecessary tagging arises when
both the meta-language and the object-language are strongly typed. The meta-
language type system forces the programmer to encode object-language values
into an universal (tagged) domain, leading to numerous and unnecessary runtime
tagging and untagging operations. In previous work [?], we have addressed the
problem of tagging by using a dependently typed meta-language which allows
the user to type the interpreter without the need for a universal value domain. In
this paper, we show how to get the same effect using well-typed object-language
representations.

Statically Checked de Bruijn Indices. De Bruijn formulated [?] a tech-
nique for handling binding of variables by using a nameless, position dependent
naming scheme. While elegant, this framework is notorious for subtle off-by-one
errors. Using well-typed object-language representations, these off-by-one errors
become meta-program typing errors and are identified earlier. We show that
this technique scales gracefully to handle richer binding mechanisms involving
patterns.

A Process for Evolving DSL Implementations. The benefits of domain-
specific languages (DSLs) are well known, but the cost of design and implemen-
tation can outweigh the benefits. The technique of embedding a DSL’s imple-
mentation in a host language with flexible abstraction mechanisms has proven
a good way to reduce these costs.

We illustrate how the features of Ωmega’s type system make it well suited
as a host language for embedding DSLs. User-defined kinds provide a mech-
anism for defining a domain-specific type system. Well-typed object-language
representations harness the type system to prove type-correctness of domain-
specific optimizations to object-programs. Again, staging constructs allow us to
define a tagless staged interpreter for our DSL. This combination of language
features makes Ωmega a powerful host language for embedding DSL implemen-
tation. The process presented here for evolving DSL implementations should be
straightforward to reproduce. Parts of it can be automated.

The remaining sections are organized as follows. Section 2 introduces Ωmega.
We then develop two comprehensive case studies: First, we implement a tagless
staged interpreter for a functional language with pattern matching (Sections 3
and 4). Second, we present a development of a small domain-specific language
for describing geometric regions (Sections 5 and 6) where we describe not only
an efficient staged interpreter, but also type-preserving optimizations. Section 8
gives an example of using the region language. Sections 9 and 10 discuss related
and future work.

2 Ωmega: A Meta-language with Support for Type

Equality

In this section we shall familiarize the reader with the most important features
of Ωmega: type equality, user-defined kinds and staging. The syntax and type
system of Ωmega are descended from Haskell, while its staging support descends
from that of MetaML.

Type Equality in Haskell. A key technique that inspired the work described
in this paper is the encoding of equality between types as a Haskell type construc-
tor (Equal a b). Thus a non-bottom value (p::Equal a b), can be regarded as
a proof of the proposition that a equals b.

The technique of encoding the equality between types a and b as a poly-
morphic function of type ∀ϕ. ϕ a→ϕ b was proposed by both Baars & Swier-
stra [?], and Cheney & Hinze [?] at about the same time, and has been described
somewhat earlier in a different setting by Weirich [?]. We illustrate this by the
datatype Equal : *→ *→ *

data Equal a b = Equal (∀ϕ. ϕ a→ϕ b)

cast :: Equal a b→ϕ a→ϕ b
cast (Equal f) = f

The logical intuition behind this definition (also known as Leibniz equality [?])
is that two types are equal if, and only if, they are interchangeable in any context.
This context is represented by the arbitrary Haskell type constructor ϕ. Proofs
are useful, since from a proof p :: Equal a b, we can extract functions that cast
values of type C[a] to type C[b] for type contexts C[]. For example, we can con-
struct functions a2b::Equal a b→ a→ b and b2a::Equal a b→ b→ a which
allow us to cast between the two types a and b in the identity context. Further-
more, it is possible to construct combinators that manipulate equality proofs
based on the standard properties of equality (transitivity, reflexivity, congru-
ence, and so on).

Equality types are described elsewhere [?], and we shall not further belabor
their explanation. The essential characteristic of programming with type equality
in Haskell is that programmers must explicitly manipulate proofs of equalities be-
tween types using a specific set of combinators. This has two practical drawbacks.
First, such explicit manipulation is tedious. Second, while present throughout a

program, the equality proof manipulations have no real computational content
– they are used solely to leverage the power of the Haskell type system to accept
certain programs that are not typable when written without the proofs. With
all the clutter induced by proof manipulation, it is sometimes difficult to discern
the difference between the truly important algorithmic part of the program and
mere equality proof manipulation. This, in turn, makes programs brittle and
rather difficult to change.

2.1 Type Equality in Ωmega

What if we could extend the type system of Haskell, in a relatively minor way, to
allow the type checker itself to manipulate and propagate equality proofs? Such a
type system was proposed by Cheney and Hinze [?], and is one of the ideas behind
Ωmega [?]. In the remainder of this paper, we shall use Ωmega, rather than pure
Haskell to write our examples. We conjecture that, in principle, whatever it is
possible to do in Ωmega, it is also possible to do in Haskell (plus the usual set of
extensions, possibly using some unsafe operations), only in Ωmega it is expressed
more cleanly and succinctly.

The syntax and type system of Ωmega has been designed to closely resemble
Haskell (with GHC extensions). For practical purposes, we could consider (and
use) it as a conservative extension to Haskell. In this section, we will briefly
outline the useful differences between Ωmega and Haskell.

In Ωmega, the equality between types is not encoded explicitly (as the type
constructor Equal). Rather, it is built into the type system, and is used implicitly
by the type checker. Consider the following (fragmentary) datatype definitions.1

data Exp e t = Lit Int where t = Int
| V (Var e t)

data Var e t = ∀γ. Z where e = (γ,t)
| ∀γα. S (Var γ t) where e = (γ,α)

Each data constructor in Ωmega may contain a where clause which contains a
list of equations between types in the scope of the constructor definition. These
equations play the same role as the Haskell type Equal in Section 2, with one
important difference: the user is not required to provide any actual evidence of
type equality – the Ωmega type checker keeps track of equalities between types
and proves and propagates them automatically.

The mechanism Ωmega uses for this is very similar to the constraints that the
Haskell type checker uses to resolve class based overloading. A special qualified
type [?] is used to assert equality between types, and a constraint solving system

1 Syntactic and Typographical Conventions. We adopt the GHC syntax for writing
the existential types with a universal quantifier that appears to the left of a data
constructor. We also replace the keyword forall with the symbol ∀. We shall write
explicitly universally or existentially quantified variables with Greek letters. Arrow
types (->) will be written as → , and so on.

is used to simplify and discharge these assertions. When assigning a type to a
type constructor, the equations specified in the where clause become predicates
in a qualified type. Thus, the constructor Lit is given the type ∀e t. (t=Int)

=> Int→ Exp e t. The equation t=Int is just another form of predicate, similar
to the class membership predicate in Haskell (e.g., Show a => a→ String).

Tracking equality constraints. When type checking an expression, the
Ωmega type checker keeps two sets of equality constraints obligations and as-
sumptions.

Obligations. The first set of constraints is a set of obligations. Obligations are
generated by the type checker either when (a) the program constructs values with
constructors that contain equality constraints; or (b) an explicit type signature
in a definition is encountered.

For example, consider type checking the expression (Lit 5). The constructor
Lit is assigned the type ∀e t.(t=Int) => Int→ Exp e t. Since Lit is poly-
morphic in e and t, the type variable t can be instantiated to Int. Instantiating
t to Int also makes the equality constraint obligation Int=Int, which can be
trivially discharged by the type checker.

Lit 5 :: Exp e Int with obligation Int = Int

Data constructors of Exp and Var have the following types:

Lit :: ∀e t. (t=Int) => Int→ Exp e t

Z :: ∀e e’ t. (e=(e’,t)) => Var e t
S :: ∀e t e’ t’. (e=(e’,t’)) => Var e’ t→ Var e t

which can be instantiated as follows:

Lit :: Int→ Exp e Int

Z :: Var (e’,t) t
S :: Var e’ t→ Var (e’,t’) t

We have already seen this for Lit. Consider the case for Z. First, the type
variable e can be instantiated to (e’,t). After this instantiation, the obligation
introduced by the constructor becomes (e’,t)=(e’,t), which can be immedi-
ately discharged by the built-in equality solver. This leaves the instantiated type
(Var (e’,t) t).

Assumptions. The second set of constraints is a set of assumptions or facts.
Whenever, a constructor with a where clause is pattern-matched, the type equal-
ities in the where clause are added to the current set of assumptions in the scope
of the pattern. These assumptions can be used to discharge obligations. For
example, consider the following partial definition:

evalList :: Exp e t→ e→ [t]

evalList exp env = case exp of Lit n→ [n]

When the expression exp of type (Exp e t) is matched against the pattern
(Lit n), the equality t=Int (see definition of Lit) is introduced as an assump-
tion. The type signature of evalList induces the obligation that the body of
the definition has the type [t]. The right-hand side of the case expression, [n],

has the type [Int]. The type checker now must discharge (prove) the obligation
[t]=[Int], while using the fact, introduced by the pattern (Lit n) that t=Int.
The Ωmega type checker uses an algorithm based on congruence closure [?], to
discharge equality obligations. It automatically applies the laws of equality to
solve such equations. In this case, the equation is discharged using congruence.

2.2 User-defined kinds

Another feature of Ωmega that we will use is the facility for user-defined kinds.
Kinds classify types in the same way that types classify values. Just as value ex-
pressions can have varying types, type expressions can have varying kinds. There
is a base kind * (pronounced “Star”) that classifies all types that classify values
such as Int, [Char], Bool→ Float. The kind *→ * classifies type constructors
such as [], the list type constructor, and Maybe, a type constructor for optional
values. Note that there are no values of type [] or Maybe.

In addition to kinds built up from * and →, Ωmega allows programmers to
define their own kinds. The syntax is analogous to datatype definitions:

kind Unit = Pixel | Centimeter

This declaration defines a new kind Unit and two new types, Pixel and
Centimeter, of kind Unit. Though there are no values of type Pixel or
Centimeter, these types can be used as type parameters to other type con-
structors. This use of type parameters has been called indexed types [?].

2.3 An Introduction to Staging

Staging is a form of meta-programming that allows users to partition a program’s
execution into a number of computational stages. The languages MetaML [?],
MetaOCaml [?], and Template Haskell support this partitioning by the use of
special syntax called staging annotations. This is also the case with Ωmega, and
we will use two such staging annotations in the examples we present in this
paper.

Brackets, [| _ |], surrounding an expression, lift the expression into the next
computational stage. This is analogous to building a piece of code that when
evaluated will be equivalent to the bracketed expression. In staged languages,
the type system reflects the delay, so that if an expression e has the type Int, the
expression [|e|] has the type (Code Int) (pronounced “code of int”). Escape,
$(_), can only occur inside of code brackets and drops the expression it surrounds
into the previous computational stage. Once the escaped expression is evaluated,
its result, which must itself be delayed, is then incorporated at the point at
which the escape has occurred. This is analogous to evaluating a computation
that builds code and then “splices” the resulting code into the larger piece of
code being built.

τ ∈ T ::= Nat | τ1 → τ2 | τ1 × τ2 | τ1 + τ2

Γ ∈ G ::= 〈〉 | Γ, τ

p ∈ P ::= •τ | Inlτ1 τ2
p | Inrτ1 τ2

p | (p1, p2)
e ∈ E ::= Lit n | Var n | λp.e | e1 e2 | (e1, e2) | Inlτ1 τ2

e | Inrτ1 τ2
e | case e1of pn → en

Fig. 1. Syntax of L1. The notation x indicates a sequence of 1 or more x’s.

Annotations introduce a notion of level into the syntax of programs. The level
of an expression is the number of its surrounding brackets minus the number
of its surrounding escapes. Levels correspond to stages, roughly, in the sense
that an expression at level n is evaluated in the n-th stage. The type system
of MetaML (and similar staged languages) statically guarantees that the staged
program is free from phase errors – situations in which a variable bound at
a later stage is used in an earlier stage. By adding staging annotations to an
interpreter, we can change its behavior so that static computation is performed
in an earlier stage. This specializes the interpreter with respect to a particular
object-program, and produces a more efficient “residual” program in the next
stage, which is free from all interpretive overhead [?]. In effect, this produces a
compiler from an interpreter [?].

There are two more staging annotations in Ωmega. The lift annotation evalu-
ates an expression of primitive type to a literal value and builds some trivial code
that returns that value. The final annotation is run. It evaluates its argument
(of code type) and executes the resulting code.

3 A Language With Patterns

In this section, we present a simple λ-calculus based language with sums and
products, which are eliminated by the use of pattern matching. Variable binding
is done with de Bruijn indices [?]. In this notation, variables are named by
natural number indices. The index of a variable is the number of intervening
binding sites between a variable’s use and its definition. The notion of binding
site is made more complex by the presence of pattern matching, and handling
this complication in an elegant and type aware manner is a contribution of this
work. The language is based on the simply typed λ-calculus. We shall refer to
this language as L1.

3.1 Syntax

The syntax of the language L1 is given in Figure 1. Four sets of terms are defined:

(1) A set of types, T, consisting of a base (in this case natural numbers), function,
product, and sum types.

(2) A set of type assignments, G, which are defined as finite sequences of types.
The binding convention used in this presentation is that the n-th type from the
right in the sequence is the type of the free variable with the index n.

(3) A set of patterns, P. The most basic kind of pattern is the (nameless) variable
binding pattern, •τ : Patterns can also be sum patterns, Inlτ1 τ2

p and Inrτ1 τ2
p,

or product (pair) patterns (p1, p2). Patterns can be nested to arbitrary depth.

(4) A set of expressions, E. The mixing of de Bruijn notation and patterns make
expressions slightly non-standard. As in standard de Bruijn notation, variables
are represented by natural number indices. Variables are bound in patterns,
which occur in λ-abstractions and case-expressions. In standard de Bruijn no-
tation the index of a variable indicates the number of intervening binding sites
between the use and binding site of the variable, the index 0 being the “most re-
cently bound variable.” In this language a pattern might bind several variables,
so the notion of “binding site” must choose a particular strategy as to which vari-
ables in a pattern are bound “earlier” than others. Sum types are introduced by
injection constructs Inl e and Inr e. Products are introduced by the pairing con-
struct, (e1, e2). Both sum and product types are eliminated by pattern matching.
Due to the limited space in this paper, we only show a subset of the language
features we have been able to implement. Additional features include recursive
definitions, let-bindings, patterns with guards, staging constructs, etc.

3.2 Meta-language Formalization

Figure 1 is a typical formalization of the syntax of a language. A good meta-
language should not only capture the syntactic properties of the language, but
semantic properties as well. Semantic properties of a language are often captured
as judgments over the syntax of the language. Using the equality type extensions
of Ωmega, we can implement the object language L1 in a way which enforces
the static semantics as defined in Figures 2 through 4. In this, we shall use the
following techniques:

Type equality constraints. A key technique is the type equality constraint.
Written as equations in where-clauses in datatype definitions, these constraints
allow the programmer to specify an exact shape of type arguments to type
constructors, and to use that shape to encode properties.

Type indexes. Object language types are represented by meta-language Ωmega
types. For example, the L1 type (Nat → Nat) corresponds to the Ωmega type
(Int→ Int).

Well-typed terms. Each judgment of the static semantics is represented by an
Ωmega datatype. A value of each of these datatypes represents a derivation of
the corresponding judgment. The actual data type definitions for the typing
judgments of each syntactic category are found in the corresponding right-hand
columns of Figures 2 through 4.

For example, a derivation of the pattern judgment Γ ⊢ p : τ ⇒ Γ ′ is repre-
sented by a value of the type (Pat t gammaIn gammaOut), where t corresponds
to τ , gammaIn to Γ and gammaOut to Γ ′. Note that only the t, gammaIn and
gammaOut arguments of the judgment are also in the data type, but not the pat-
tern argument (p). This is possible because the judgments are syntax directed

Γ, τ ⊢ 0 : τ
(Base)

Γ ⊢ n : τ

Γ, τ ′ ⊢ (n + 1) : τ
(Weak)

data Var e t
= ∀γ. Z where e = (γ,t)
| ∀γα. S (Var γ t) where e=(γ,α)

Fig. 2. Static semantics of L1 variables: (Γ ⊢ n : τ ⊆ G × N × T) and Var e t.

and the constructors of the derivations encode exactly the same information.
This trick is used in the other judgments as well.

Instead of manipulating syntax, the meta-program manipulates data struc-
tures representing derivations of the typing judgments. The main advantage of
this representation scheme, is that only well-typed L1 terms can be created and
manipulated in an Ωmega program. One might think that constructing and ma-
nipulating judgments is more complicated than constructing and manipulating
syntax. We will argue that this is not necessarily the case.

3.3 Static Semantics

The static semantics of the language L1 is defined as a set of three inductive
judgment relations for variables, patterns and expressions.

Variables (Figure 2). The variable typing judgment (Figure 2) is defined induc-
tively on the natural number index of a variable. Its task is to project the appro-
priate type for a variable from the type assignment: the constructor Z projects
the 0-th type; iterating the constructor S n times projects the n-th type. Not
surprisingly, the structure of variable judgments is reminiscent of the structure
of natural numbers. In the right-hand column of Figure 2 variable judgments are
represented by the type constructor (Var e t), whose first argument, e, is the
typing assignment, and whose second argument, t, is the type of the variable
expression itself.

The two constructors, Z and S, correspond to using the Base and Weak rules
to construct the variable judgments. The constructor Z translates the inductive
definition directly: its definition states that there exists some environment γ

such that the environment e is equal to γ extended by t. The constructor S

takes a “smaller” judgment (Var γ t), and asserts the requirement that the
environment e is equal to the pair (γ, α), where both γ and α are existentially
quantified.

Patterns (Figure 3). The pattern typing judgment relates an “input” type as-
signment Γ , a pattern p which should match a value of type τ , and an extended
type assignment Γ ′ which assign types to variables in p. It is defined in Figure 3.
As more than one variable in a pattern can be bound, the judgment specifies
how names of variables are related to numerical indices. The choice is expressed

Γ ⊢ •τ : τ ⇒ Γ, τ
(Var)

Γ ⊢ p : τ1 ⇒ Γ ′

Γ ⊢ Inlτ1 τ2
p : τ1 + τ2 ⇒ Γ ′

(Inl)

Γ ⊢ p : τ2 ⇒ Γ ′

Γ ⊢ Inrτ1 τ2
p : τ1 + τ2 ⇒ Γ ′

(Inr)

Γ ⊢ p1 : τ1 ⇒ Γ ′

Γ ′ ⊢ p2 : τ2 ⇒ Γ ′′

Γ ⊢ (p1, p2) : τ1 × τ2 ⇒ Γ ′′
(Pair)

data Pat t gin gout =
PVar where gout = (gin,t)

| ∀αβ. PInl (Pat α gin gout)
where t = (Either α β)

| ∀αβ. PInr (Pat β gin gout)

where t = (Either α β)
| ∀αβγ.PPair (Pat α gin γ)

(Pat β γ gout)
where t = (α,β)

Fig. 3. Static semantics of L1 patterns (Γ ⊢ p : τ ⇒ Γ ′ ⊆ G × P × T × G) and
Pat t gin gout.

in the Pair rule: the “furthest” variable binding site is the leftmost bottom-
most variable. For example: λ(•, •). (Var 0, Var 1) corresponds to the function
λ(x, y). (y, x).

The pattern typing judgment Γin ⊢ p : τ ⇒ Γout is encoded by the Ωmega
datatype (Pat t gin gout) in the right-hand column of Figure 3.

The constructor function for variable-binding patterns PVar requires an equal-
ity constraint that the type of the target type assignment gout is equal to
the source type assignment gin paired with the type of the pattern itself
(gout=(gin,t)). The constructor functions for building patterns for sum types
PInl (respectively PInr) take sub-pattern judgments (Pat α gin gout) (re-
spectively (Pat β gin gout)), and require that t equals (Either α β). The
most interesting case is the pattern constructor function for pair types PPair.

· · · | ∀αβγ. PPair (Pat α gin γ) (Pat β γ gout) where t = (α,β)

It takes a pair of sub-pattern judgments. It is worth noting how the target type
assignment of the first argument, γ, is then given as a source type assignment to
the second argument, thus imposing left-to-right sequencing on type assignment
extension for pairs.

Expressions (Figure 4). The typing judgment for expressions is defined in
Figure 4. The expression judgments are represented by the type constructor
(Exp e t). Again, e is the type assignment, and t the type of the expression
itself. A general pattern emerges: by using existentially quantified variables and
type equality constraints, the constructor functions of the datatype mimic the
structure of the formal judgments. In the Exp data type there are two interesting
constructor functions Abs and Case, which include the Pat sub-judgment. These
cases implement the static scoping discipline of the language, and ensure that
both the scoping discipline and the typing discipline are maintained by the meta-
program.

· · · | ∀αβγ. Abs (Pat α e γ) (Exp γ β) where t = α→β

In the λ-abstraction case, the sub-pattern judgment transforms the environ-
ment from e to γ, and the body must be typable in the environment γ. Only then

Γ ⊢ Lit n : Nat
(Lit)

Γ ⊢ n : τ

Γ ⊢ Var n : τ
(Var)

Γ ⊢ p : τ1 ⇒ Γ ′

Γ ′ ⊢ e : τ2

Γ ⊢ λp.e : τ1 → τ2

(Abs)

Γ ⊢ e1 : τ ′ → τ

Γ ⊢ e2 : τ ′

Γ ⊢ e1 e2 : τ
(App)

Γ ⊢ e1 : τ1

Γ ⊢ e2 : τ2

Γ ⊢ (e1, e2) : τ1 × τ2

(Pair)

Γ ⊢ e : τ1

Γ ⊢ Inlτ1 τ2
e : τ1 + τ2

(Inl)

Γ ⊢ e : τ2

Γ ⊢ Inrτ1 τ2
e : τ1 + τ2

(Inr)

Γ ⊢ e : τ Γ ⊢ pn : τ ⇒ Γn Γn ⊢ en : τ ′

case e of pn → en : τ ′
(Case)

data Exp e t
= Lit Int (Equal t Int)

| V (Var e t)
| ∀αβγ. Abs (Pat α e γ) (Exp γ β)

where t = (α→β)
| ∀α. App (Exp e (α→ t))

(Exp e α)
| ∀αβ. Inl (Exp e α)

where t = Either α β
| ∀αβ. Inr (Exp e β)

where t = Either α β
| ∀αβ. Pair (Exp e α) (Exp e β)

where t =(α,β)
| ∀α. Case (Exp e α) [Match e α t]

data Match e t’ t =

∀γ. Match (Pat t’ e γ) (Exp γ t)

Fig. 4. Static semantics of L1 expressions: Γ ⊢ e : τ ⊆ G × E × T and Exp e t.

is the whole λ-term well formed. Of course, the type t of the overall λ-abstraction
must be equal to a function type between the domain and the codomain (α→β).

data Exp e t = ∀α. Case (Exp e α) [Match e α t] | · · ·
data Match e t’ t = ∀γ. Match (Pat t’ e γ) (Exp γ t)

A case expression, with a type assignment e, of type t consists of a discrimi-
nated expression of type Exp e α, and a number of pattern matches. Each match
consists of a pattern which augments the type assignment e to some type as-
signment γ, and a body which produces a value of type t in the type assignment
γ. Since in each match the pattern can extend the environment differently, the
extended environment, γ, is existentially quantified. This use of existential types
allows us to give the same type to an entire collection of matches.

4 Dynamic Semantics

We illustrate meta-programming over typed object-language syntax by defining
a series of interpreters for the language L1. We are interested in applying staging
to interpreters to obtain efficient implementations. The efficiency of such an im-
plementation comes from eliminating interpretive overhead and tagging overhead
from the interpreter. To demonstrate our technique: We sketch out a preliminary
tagged dynamic semantics for L1 to illustrate the concept of tagging overhead.
(Section 4.1). We define an unstaged definitional interpreter. This interpreter
avoids tagging altogether by the use of equality constraints (Section 4.2). We
then stage the definitional interpreter (Section 4.3). Finally, we apply a binding
time improvement to the staged interpreter (Section 4.4).

eval0 :: Exp e t→ [V]→ V

eval0 (Lit i _) env = VI i

eval0 (V var) env = evalVar0 var env

eval0 (App f x) env =

unVF (eval0 f env) (eval0 x env)

eval0 (Abs pat e _) env =

VF (\v→

eval0 e (unJust(evalPat0 pat v env)))

data V = VF (V→ V) | VI Int

| VP V V | VL V | VR V
unVF (VF f) = f

evalVar0 :: Var e t→ [V]→ V
evalVar0 (Z _) (v:vs) = v

evalVar0 (S s _) (v:vs) = evalVar0 s vs

evalPat0::Pat t i o→ V→ [V]→ Maybe [V]
evalPat0 (PVar _) v env = return (v:env)

Fig. 5. The tagging interpreter. These functions are purposely incomplete, and
are given only to illustrate the use of tags.

4.1 The Tagging Interpreter

To illustrate the problem with tagging we write a dynamic semantics for L1

as the function eval0. This interpreter uses a tagged value domain V which
encodes in a single sum type all the possible values an L1 program can return.
Runtime environments are then represented by lists of these values. This scheme
has been widely used for writing (interpreted) language implementations. In
Figure 5 we give a sketch of how such an interpreter is implemented. “Unfolding”
this interpreter on the input expression, (app (abs (var z)) (lit 0)), yields
the following value: unVF (VF (\v→ v)) (VI 0)

The unfolding (we ignore for a moment how such an unfolding can be achieved)
has removed the recursive calls of eval0, but the program still contains the tags
VF, unVF and VI. Such tags may indeed be necessary if the object language is
untyped/dynamically typed. However, in our implementation, only well-typed
L1 expressions are ever interpreted. This means that the tagging and untagging
operations in the residual programs never do any useful work, since the strong
typing of the object language guarantees that no mismatch of tags ever occurs.
Practical testing [?] has revealed that the performance penalty exacted on staged
interpreters by unnecessary tags may be as high as a factor of 2-3 (in some cases
even as high as 3-10 [?]).

4.2 The Tagless Interpreter

A dynamic semantics that takes advantage of well-typed object terms can be
given in a “categorical style”: by writing a set of semantic functions, one for
each of the judgments.

eval :: Exp e t→ (e→ t)
evalVar :: Var e t→ (e→ t)

evalPat :: Pat t ein eout→ (t→ ein→ (Maybe eout→ a)→ a)

For example, the semantic function eval is defined inductively on the struc-
ture of typing judgments for expressions. Its meaning is an “arrow” (i.e., here

a Haskell function) from the meaning of type assignments (the runtime envi-
ronment) to the meaning of types. For example, the meaning of the type as-
signment (〈〉, Int, Int, Int → Int) is a Haskell value of the nested product type
((((),Int),Int),Int→ Int).

Before we proceed to define the semantics of various judgments of L1, we
digress briefly to discuss effects introduced by presence of patterns in the object
language L1. Pattern matching failure may manifest itself in two different (and
related) ways:

(1) Global failure. Pattern matching may fail when matched against an
incompatible value. This may occur, for example, in λ-expressions, such as
(λ(Inl •). Var 0) (Inr 10). In case of such a failure, the meaning of the program is
undefined. In our implementation we will model the global failure by the unde-
fined, bottom value in Haskell (the function error). (2) Local failure. Pattern
matching may also fail in one or more alternatives in a case expression. Local
failure may, or may not, be promoted into a global failure: if a pattern match in
one arm of a case expression fails, the control should be passed to the next arm
of the case expression, until one of them succeeds. If there are no more arms, a
global failure should take place.

One way to model pattern matching failure is to use a continuation. The de-
notations of patterns that produce an environment of type eout are functions
of type (t→ ein→ (Maybe eout→ a)→ a). In other words, they take a value,
and input environment, and a continuation κ which consumes the output envi-
ronment and produces “the rest of the program” of type a. The argument to κ

is a maybe type so that the continuation can decide how to continue in case of
the success or failure of pattern matching.

We now define the function eval and its siblings evalVar and evalPat (we
shall refer to the implementation in Figure 6). It is in these functions that the
assumptions and obligations of judgment constructors play an essential role.

Expressions: eval. Let us look at several clauses of the function eval (Fig-
ure 6) to demonstrate the main points of our technique.

Literals (line 2). Consider the case of evaluating integer literals. Here we see
the most elementary use of the equality constraints. The function eval must
return a result of type t, but what we have is the integer i. However, pattern
matching over the constructor Lit introduces the fact that t = Int. The Ωmega
type checker uses this fact to prove that i indeed has the type t.

Abstraction (line 4). The abstraction case returns a function of type α→ β,
where α and β are the types of its domain and codomain. In the body of this
function, its parameter x is matched against the pattern pat. The continuation
h given to evalPat results in global failure if the pattern matching fails. If
the pattern matching succeeds, it simply evaluates the function body with the
extended environment produced by evalPat. Finally, the fact that t = α→ β

is used to give the resulting function the required type t.

1 eval :: (Exp e t)→ e→ t

2 eval (Lit i) env = i
3 eval (V v) env = evalVar v env

4 eval (Abs pat exp) env =
5 (\x→ evalPat pat x env h)
6 where h Nothing = error "Glob. Failure"

7 h (Just env) = eval exp env
8 eval (App f x) env = (eval f env)

9 (eval x env)
10 eval (Pair x y) env = (eval x env,
11 eval y env)

12 eval (Case e branches) env =
13 (evalCase (eval e env) branches env)

14

15 evalVar :: (Var e t)→ e→ t

16 evalVar Z env = snd env
17 evalVar (S v) env = evalVar v (fst env)
18

19 evalPat :: (Pat t ein eout)→ t→ ein→
20 (Maybe eout→ a)→ a

21 evalPat (PVar) v e k = k (Just (e,v))
22 evalPat (PInl pt) v e k =

23 case v of

24 Left x→ evalPat pt x e k
25 Right → k Nothing

26 evalPat (PInr pt) v e k =
27 case v of
28 Left → k Nothing

29 Right x→ evalPat pt x e k
30 evalPat (PPair pat1 pat2) v e k =

31 case v of
32 (v1,v2)→ evalPat pat1 v1 e h
33 where h Nothing = k Nothing

34 h (Just eout1) = evalPat pat2 v2
35 eout1 k

36

37 evalCase :: t1→ [Match ein t1 t2]→
38 ein→ t2
39 evalCase val [] env = error "Empty Case!"
40 evalCase val ((Match(pat,body)):rest) env =

41 (evalPat pat val env k)
42 where k Nothing = evalCase val rest env

43 k (Just env2) = eval body env2

Fig. 6. Tagless interpreter for L1. The semantic functions operate over the struc-
ture of judgments.

Application (line 9). The function part of the application is evaluated, obtain-
ing a function value of type α→ t; next, the argument is evaluated obtaining a
value of type α. Finally the resulting function is applied, obtaining a result of
type t. The function eval is a polymorphic recursive function with type eval

:: ((Exp e t)→ e→ t). It is called recursively at two different instances. This
is frequently the case in this kind of meta-programming.

Case (line 12). The implementation of case involves an interesting interaction
with the semantics of patterns, evalPat. The function eval first evaluates the
discriminated expression e, and then calls the auxiliary function evalCase which
matches each arm of the case against this value. The function evalCase examines
a list of matches. If the list is empty, matching has failed with global failure.
Otherwise, in each arm, evalPat matches the pattern against the discriminated
value val. The function evalPat is given the continuation k as its argument.
The continuation k proceeds to evaluate the body if the pattern succeeds, or
simply calls evalCase recursively with the next pattern if the pattern matching
fails (lines 42-43).

Variables: evalVar (line 15). The variable case of eval passes control directly
to the function evalVar, which projects the appropriate value from the runtime
environment. The base case for variables casts the runtime environment of type
e, using the fact that e=(γ,t), to obtain the pair (γ,t). Then, the function
snd is applied, to obtain the correct result value of type t. In the weakening
case, the fact that e=(γ,t’) is again used to treat the runtime environment as
a pair. Then, the function evalVar is called recursively on the predecessor of

the variable (v) index together with the first component of the pair (the sub-
environment (fst env)).

Patterns: evalPat. The function evalPat has four arguments: a pattern judg-
ment of type (Pat t ein eout); a value of type t against which the pattern
matching will be done; an input environment of type ein; and a continuation.
The continuation either (a) consumes an extended output environment of type
eout to produce some final result of type a or, (b) knows how to produce some
alternative result of type a in case the pattern matching fails.

Variable patterns (line 21). For variable patterns, the value v is simply added
to the environment e. This transforms the initial environment into a larger en-
vironment, which is then supplied to the continuation k.

Sum patterns (line 22). The case for Inl (Inr) patterns is more interesting.
First, the value v is examined to determine whether it is the left (or right)
injection of a sum. If the injection tag of the pattern does not match the injection
tag of the value, the continuation k is immediately applied to Nothing indicating
pattern match failure. If the injection tag matches, the sub-value x is selected
from v and evalPat is recursively invoked with the sub-pattern p, the sub-value
x, and the same continuation k. It is this recursive call to evalPat that binds
variables.

Pair patterns (line 30). The case for pair patterns involves taking a pair value
apart, and matching the left sub-pattern with the first element of the value.
However, this invocation of evalPat is given an enlarged continuation h. The
continuation h looks at its argument. If it is Nothing it immediately invokes
the initial continuation k with Nothing, thus propagating failure that must have
occurred during the pattern matching of the left sub-pattern. If, however, its
argument is some output environment eout1 obtained from matching the left
sub-pattern, it recursively invokes evalPat on the right sub-pattern with the
runtime environment eout1 and the initial continuation k.

Note that the structure of the pattern judgment (specified in Figure 3) forces
us to thread the environment correctly: were we to make the mistake of first
evaluating the right-hand side pattern and threading its result to the evaluation
of the left-hand side pattern, the types simply would not work out. This is an
important advantage of using typed object-language representations: meta-level
types catch object-level semantic errors.

Ubiquitous in these definitions is the implicit use of equality constraints, ma-
nipulated behind the scenes by the type checker to ensure that the functions are
well-typed. In eval, for example, they are always used to show that although
each equation in the definition of eval returns a value of a different type, all
of those types can be made equal to the type t from eval’s type signature.
Thus, the type checker automatically performs precisely the same role as tags in
an interpreter which uses a universal domain. However, the crucial difference is
that while tags are checked dynamically, at the runtime of the interpreter, the

1 evalS :: Exp e t→ Code e→ Code t

2 evalS (V v) env = evalVarS v env
3 evalS (Lit i) env = [| i |]

4 evalS (Abs pat exp) env =
5 [| \x→ $(evalPatS pat [|x|] env h) |]
6 where h Nothing = [| error "Failure" |]

7 h (Just env2) = evalS exp env2
8

9

10 evalVarS :: Var e t→ Code e→ Code t

11 evalVarS Z env = [| snd ($env) |]

12 evalVarS (S v) env =
13 [| ($(evalVarS v [|fst ($env)|])) |]

14

15 evalPatS :: (Pat t e1 e2)→
16 Code t→ Code e1→
17 ((Maybe (Code e2))→ Code a)→
18 Code a

19 evalPatS PVar v e k =
20 k (Just [| ($([| ($e,$v) |])) |])

Fig. 7. The staged interpreter eval, take 1.

equality constraint manipulation is performed statically, at type checking time.
Thus, unlike tags, it incurs no runtime performance penalty for the interpreter.

4.3 The Staged Interpreter

The interpreter presented in Figure 6 does not rely on a universal domain for
its values. Rather, it starts from a well-typed judgment (Exp e t) and ulti-
mately returns a value of type t: such use of polymorphism gives us, in effect, a
whole family of evals, one for each resulting type. Instead of tags, the equality
constraints partition this family of evals. Thus the tagging overhead has been
removed, but the interpreted overhead of traversing the data representing the
program remains. Staging can remove this overhead. It is straightforward to add
staging to the interpreter of Figure 6: we modify the types of the interpreter,
adding Code to the types of the runtime environment and the result. Thus, the
new types of the modified semantic (interpreter) functions are changed as follows
(we also change their names, appending “S” for “staged”):

evalS :: Exp e t→ Code e→ Code t

evalVarS :: Var e t→ Code e→ Code t
evalPatS :: Pat t ein eout→ Code t→ Code ein→

(Maybe (Code eout)→ Code a)→ Code a

Figure 7 gives the relevant definitions of the staged semantics. (Note that, due
to limitations of space, we show only those parts of the implementation that
differ from the final version of the interpreter in Figure 8). Consider the simplest
case, that of literals (Figure 7, line 3). Two things are different from the unstaged
version: First, the result of the function is a code value, enclosed in code brackets.
Recursive calls to evalS are always escaped into a larger piece of code that is
being built. Second, the type equalities of the form t=Int, introduced as facts by
pattern-matching on the judgments (line 3), are used in a richer type context.
For example, in line 3 the type checker “converts” a result of Code Int to type
Code t.

Another thing to note is the slightly changed type of the continuation in
evalPat. The continuation takes an argument of type (Maybe (Code env)), i.e.,

1 data PSE e = EMPTY where e = ()

2 | ∀αβ. EXT (PSE α) (Code β)
3 where e=(α,β)
4

5 eval2S :: Exp e t→ PSE e→ Code t
6 eval2S (Lit i) env = [| i |]

7 eval2S (V v) env = evalV2S v env
8 eval2S (App e1 e2) env =

9 [| $(eval2S e1 env) $(eval2S e2 env) |]
10 eval2S (EInl e) env =
11 ([|Left ($(eval2S e env))|])

12 eval2S (EInr e) env =
13 ([|Right ($(eval2S e env))|])

14 eval2S (Abs pat body) env =
15 ([| x→ $(evalPat2S pat [|x|] env h)|])

16 where h (Nothing) = [| error "fail" |]
17 h (Just e) = eval2S body e
18 eval2S (ECase e matches) env = [|

19 let value = $(eval2S e env)
20 in $(evalCase2S [|value|] matches env)|]

21

22 evalCase2S ::

23 Code t1→ [Match e t1 t2]→ PSE e→ Code t2
24 evalCase2S val [] env = [| error "fail" |]
25 evalCase2S val ((Match (pat,body)):rest) env =

26 evalPat2S pat val env h

27 where h (Nothing) = evalCase2S val rest env

28 h (Just env2) = eval2S body env2
29

30 evalVar2S :: Var e t→ PSE e→ Code t
31 evalVar2S Z (EXT _ b) = b
32 evalVar2S (S s) (EXT e _) = evalVar2S s e

33

34 evalPat2S :: Pat t ein eout→ (Code t)→
35 (PSE ein)→ (Maybe (PSE eout)→ Code ans)→
36 Code ans
37 evalPat2S PVar v ein k = k (Just (EXT ein v))

38 evalPat2S (PInl pt) v ein k = [|
39 case $v of

40 Left x → $(evalPat2S pt [|x|] ein k)
41 Right x→ $(k Nothing) |]

42 evalPat2S (PInr pt) v ein k = [|
43 case $v of
44 Left x→ $(k Nothing)

45 Right x→ $(evalPat2S pt [|x|] ein k) |]
46 evalPat2S (PPair pt1 pt2) v ein k = [|

47 case $v of
48 (v1,v2)→
49 $(evalPat2S pt1 [|v1|] ein (h [| v2 |]))|]
50 where h n Nothing = k Nothing
51 h n (Just eout1) =

52 evalPat2S pt2 n eout1 k

Fig. 8. Binding time improved staged interpreter.

the success or failure portion of the argument is static, while the environment
itself is dynamic. This means that we can statically generate both the success
and failure branches of the pattern.

We will not further belabor the explication of this particular staged imple-
mentation, since we will rewrite and improve it in the following section. It is
instructive, however, to examine the residual code produced by the interpreter
from Figure 7 as this will motivate the improvements. Consider the source pro-
gram λ•. λ•. (Var 0) (Var 1). The code produced by the staged interpreter evalS

is basically: \x→\f→ (snd (((),x),f)) (snd (fst (((),x),f))) .

The two boxed expressions in the residual code above correspond to the vari-
able case of evalS: as the interpreter descends under the abstraction terms, it
builds ever larger runtime environments. At the variable use sites, the interpreter
evalVarS then generates projection functions (e.g., snd (fst · · ·)) to project
runtime values from these environments. This leads to variable lookup at run-
time which is proportional to the length of the runtime environment, an instance
of interpretive overhead par excellence.

4.4 Improved Staged Interpreter

The process of (slightly) changing the interpreter to make it more amenable
to staging is known as binding time improvement [?]. In the remainder of this
section, we will apply a binding time improvement to the staged interpreter for
L1 with the goal of removing the dynamic lookup mentioned above. The full

implementation of the interpreter with the binding time improvement is given
in Figure 8.

The previously presented staged interpreter fails to take advantage of the fact
that the runtime environment is partially static. Namely, while the values in the
environment are not known until stage one, the actual shape of the environment
is known statically and depends only on the syntactic structure of the inter-
preted term. Therefore, we should be able to do away with the dynamic lookup
of values in the runtime environment. The resulting interpreter should produce
residual code for the above example that looks like this: [| \x→\f→ f x |].
Recall that environments in the previous definitions of the interpreter are dy-
namic nested pairs of the form [|((...,v2),v1)|]. The corresponding partially
static environment is a static nested pair tuple, in which each second element is
a dynamic value: ((...,[|v2|]),[|v1|]). This relationship between environ-
ment types and the corresponding partially static environments is encoded by
the following datatype:

data PSE e = EMPTY where e = ()
| ∀αβ. EXT (PSE α) (Code β) where e=(α,β)

A partially static environment (hence, a PSE) can either empty (EMPTY), or
it can be a PSE extended by a dynamic value. In a PSE, constructed using EXT,
the shape of the environment is known statically, but the actual values that the
environment contains are known only at the next stage. This allows us to perform
the projections from the PSE statically, while the actual values projected are not
known until runtime. The type equality constraint ensures that the type index e

is identical in form (i.e. nested pairs) to the form of the environment argument
of judgments (the e in (Exp e t) and (Var e t)). Now, we can give a new type
to the interpreter, as follows:

eval2S :: Exp e t→ PSE e→ Code t
evalVar2S :: Var e t→ PSE e→ Code t

The interpreter now takes a judgment (Exp e t), and a partially static envi-
ronment (PSE e), and produces a delayed result of type (Code t). The largest
change is in the evaluation function for variables, evalVar2S. The base case
takes a zero variable judgment and a PSE (EXT b), with b::code β, and
introduces the equality e=(α,β). From this fact, the type checker can easily
conclude that β is equal to t. A simple congruence then further allows the type
checker to conclude that (Code β) is equal to (Code t). The inductive case is
similar: the equality constraints introduced by the pattern matching are used to
treat the environment as a pair, and then a sub-environment is projected from
the environment and used in the recursive call to evalVar2S. Partially static
environments are created in the PVar case of evalPat2S.

Now, if we consider the L1 program (λ•.λ•.(Var 0)(Var 1)), the code generated
for it by the interpreter in Figure 8 looks like this: [|\x→\f→ f x|]. All
the recursive calls to eval have been unfolded, all the dynamic lookups in the

environment have been replaced by just variables in the residual program, and
there are no tags.

5 The Region DSL: Embedded Implementation

The Region language is a simple DSL whose programs are descriptions of two-
dimensional geometric regions. The example is just large enough to show the
techniques involved.

5.1 Magnitudes

Recall the user-defined kind Unit we defined in Section 2.2. Using the kind Unit,
we can first define a datatype of lengths indexed by a unit of measure:

data Mag u = Pix Int where u = Pixel
| Cm Float where u = Centimeter

Ωmega infers the kind of Mag to be Unit -> *. Note how the parameter to
Mag is not of kind *, this allows the user to define domain-specific type systems
for the DSL within the host languages type system. Magnitudes are lengths with
an associated type (unit) index.

As we have seen earlier, equality constraints force the constructors Pix and Cm

to produce values of type Mag annotated by the appropriate unit of measurement.
Here are some programs manipulating Mag u values:

scale = 28

pxTOcm :: Mag Pixel→ Mag Centimeter
cmTOpx :: Mag Centimeter→ Mag Pixel

pxTOcm (Pix i) = Cm (intToFloat (div i scale))
cmTOpx (Cm f) = Pix (round (f #* intToFloat scale))

A note on Ωmega arithmetical operator names: built-in arithmetic functions
on floats are prefixed with a hash mark (#). Note that these equations define total
functions even though the case analysis is not exhaustive. This is because clauses
such as, for example, pxTOcm (Cm f) = ... would be ill-typed because the obli-
gation u = Centimeter cannot be discharged given the assumption u = Pixel.
For this reason, the type parameter u in Mag u acts more like a type index than
a usual parameter.

We lift the following arithmetic operations to be used on Magnitudes.

neg :: Mag u→ Mag u

plus, minus, times :: Mag u→ Mag u→ Mag u
leq :: Mag u→ Mag u→ Bool

The lifting is straightforward, for example:

times (Pix a) (Pix b) = Pix (a*b)
times (Cm a) (Cm b) = Cm (a#*b)

We will also need some other derived operators.

square a = times a a
between a b c = leq a b && leq b c

5.2 Regions

Now we can define an embedded implementation of the Region language. The
meaning of a region is a set of points in the two-dimensional plane. In this style
of implementation, we shall represent a region by its characteristic function.

type Region u = Mag u→ Mag u→ Bool

Primitive regions The Region language supports four primitive regions, circles
of a given radius (centered at the origin), rectangles of a given width and height
(centered at the origin), the all-inclusive universal region, and the empty region.

circle :: Mag u→ Region u

rect :: Mag u→ Mag u→ Region u
univ :: Region(u)
empty :: Region(u)

circle r = \x y→ leq (plus (square x) (square y)) (square r)

rect w h = \x y→ between (neg w) (plus x x) w &&
between (neg h) (plus y y) h

univ = \x y→ True

empty = \x y→ False

Region combinators The Region language supports the following combinators
for manipulating regions: The combinator trans (δx,δy) translates a region by
the given amounts along both the X and Y axes; The combinator convert t

changes the units used to describe a region according to t. The combinators
intersect and union perform set intersection and set union, respectively, on
regions considered as sets of points.

trans :: (Mag u,Mag u) -> Region u -> Region u
convert :: (Mag v -> Mag u) -> Region u -> Region v

intersect :: Region u -> Region u -> Region u
union :: Region u -> Region u -> Region u

trans (a,b) r = \x y -> r (minus x a) (minus y b)
convert t r = \x y -> r (t x) (t y)

intersect r1 r2 = \x y -> r1 x y && r2 x y
union r1 r2 = \x y -> r1 x y || r2 x y

6 Intensional implementation

One problem with the embedded implementation of the previous section is that
we can not write programs that manipulate the intensional form of a region.
Such programs include optimizing transformations, pretty printers, and program
analyses (such as computing a bounding box for a region). Because regions are
represented by their denotations as functions, their structure is opaque to the
rest of the program. The solution to removing this opacity is to use a data
structure to represent regions. Consider the following näıve attempt at defining
such a data structure.

data Len = PixLen Int | CmLen Float

data RegExp = Univ

| Empty
| Circle Len

| Rect Len Len
| Union RegExp RegExp
| Inter RegExp RegExp

| Trans (Len,Len) RegExp
| Convert CoordTrans RegExp

data CoordTrans = CM2PX | PX2CM

While solving one problem, this introduces another: meta-programs can now
build ill-typed object programs. Here is one such meaningless program:

Convert CM2PX (Convert CM2PX Univ)

This is a step backwards from the embedded approach, in which object-
language type errors show up as meta-language type errors. Can we achieve
both intensional manipulation and object-level type safety? Yes – by using type-
equality constraints. This allows us to define an Unit indexed intensional rep-
resentation that captures all the object-level type information present in the
embedded function approach.

data RegExp u

= Univ
| Empty
| Circle (Mag u)

| Rect (Mag u) (Mag u)
| Union (RegExp u) (RegExp u)

| Inter (RegExp u) (RegExp u)
| Trans (Mag u, Mag u) (RegExp u)
| ∀ v. Convert (CoordTrans v u) (RegExp v)

data CoordTrans u v

= CM2PX where u = Centimeter, v = Pixel
| PX2CM where u = Pixel, v = Centimeter

This representation enforces typing constraints as in the embedded approach
but also supports intensional analysis of Region expressions.

6.1 Type relations

The definition of the datatype CoordTrans is interesting in its own right, demon-
strating the technique of embedding type relations in types of the host language.
The relation encoded by CoordTrans would be written in more traditional math-
ematical notation as

{(Centimeter, P ixel), (Pixel, Centimeter)}

The elements CM2PX and PX2CM are witnesses to the relation. Pattern matching
over such witnesses allows the type inference to locally make use of the fact that
the relation holds. Consider the following program:

opp :: CoordTrans a b -> CoordTrans b a

opp CM2PX = PX2CM
opp PX2CM = CM2PX

While type checking the body of the first equation, we have the assumptions
a = Centimeter and b = Pixel at our disposal. We need to check that PX2CM
has type CoordTrans b a. This check results in the obligations b = Pixel and
a = Centimeter, precisely the assumptions we have at our disposal.

The simplest type relation just encodes a single type-equality constraint. For
this purpose, the Ωmega prelude defines the following datatype:

data Eq a b = Eq where a = b

A value of type Eq a b is a token representing the fact that a equals b. We
can make use of this fact by pattern matching the value against the pattern
Eq. We use this technique later. For now, just note that building values of type
Eq a b is a way to inform the type checker of a fact it wasn’t already aware of.
The following function shows how one might construct an Eq a b value.

twoPoint :: CoordTrans a b -> CoordTrans b c -> Eq a c
twoPoint CM2PX PX2CM = Eq

twoPoint PX2CM CM2PX = Eq

Once again, these equations are exhaustive because no other combinations
type check. In the first equation, we have the assumptions a = Centimeter,
b = Pixel, c = Centimeter available when discharging the proof obligation
a = c.

6.2 Interpreters for free

We can reuse the combinators from the embedded implementation to define
an interpreter for this representation of region expressions. Notice how easy it
is to define interp: just replace each data constructor with its corresponding
combinator.

univ ∪ r = univ empty ∩ r = empty

empty ∪ r = r = univ ∩ r (r1 ∪ r2) ∩ (r1 ∪ r3) = r1 ∪ (r2 ∩ r3)

conv τ12 (conv τ21 r) = r conv τ12 (r1 ∪ r2) = conv τ12 r1 ∪ trans τ12 r2

trans δ (trans δ
′

r) = trans (δ + δ
′

) r trans δ (r1 ∪ r2) = trans δ r1 ∪ trans δ r2

Fig. 9. Some algebraic identities on region expressions.

interp :: RegExp u -> Region u
interp Univ = univ

interp Empty = empty
interp (Circle r) = circle r

interp (Rect w h) = rect w h
interp (Union a b) = union (interp a) (interp b)

interp (Inter a b) = intersect (interp a) (interp b)
interp (Trans xy r) = trans xy (interp r)
interp (Convert trans r) = convert (interpTrans trans) (interp r)

interpTrans :: CoordTrans u v -> Mag v -> Mag u

interpTrans CM2PX = pxTOcm
interpTrans PX2CM = cmTOpx

6.3 A simple optimizer

Region expressions have a rich algebraic structure. Figure 9 show a handful
of identities over region expressions. These identities constitute domain-specific
knowledge and can be used to optimize object programs for performance. We
illustrate the utility of the typed intensional region representation for program
transformation by writing a function simplify that applies domain-specific re-
gion equalities like those in Figure 9 to simplify a region expression.

simplify :: RegExp u -> RegExp u

simplify (Union a b) = mkUnion (simplify a) (simplify b)
simplify (Inter a b) = mkInter (simplify a) (simplify b)
simplify (Trans xy r) = mkTrans xy (simplify r)

simplify (Convert t r) = mkConvert t (simplify r)
simplify t = t

The function simplify works by replacing (in a bottom up fashion) each data
constructor in a Region expression with its corresponding “smart” constructor.
The smart constructor “implements” the algebraic identites for that combinator.
Here is the smart constructor for Convert expressions.

mkConvert :: CoordTrans u v -> RegExp u -> RegExp v

mkConvert t (Convert t’ r) = case twoPoint t’ t of Eq -> r
mkConvert t (Univ) = Univ

mkConvert t (Empty) = Empty
mkConvert t (Union a b) = Union (mkConvert t a)

(mkConvert t b)
mkConvert t (Inter a b) = Inter (mkConvert t a)

(mkConvert t b)

mkConvert t (Circle rad) = Circle (convMag t rad)

mkConvert t (Rect w h) = Rect (convMag t w) (convMag t h)
mkConvert t (Trans (dx,dy) r) = Trans (convMag t dx,convMag t dy)

(mkConvert t r)

convMag :: CoordTrans u v -> Mag u -> Mag v

convMag t a = interpTrans (opp t) a

In the first equation, we have the typing assignments t :: CoordTrans u v,
t’ :: CoordTrans v’ u, and r :: RegExp v’ for some arbitrary (Skolem)
type v’. We want to return r, but the type checker doesn’t know that it has the
right type, RegExp v. In order to inform the type checker of this fact we build
a Eq v’ v witness using the previously defined function twoPoint and pattern
match it against Eq. In the scope of the pattern, the type checker knows v’ = v

and uses this fact to deduce r :: RegExp v. An important advantage of using
a typed intensional representation is that manipulations of Region expressions
must obey the typing invariants of the Region language as captured in the defini-
tion of RegExp. It is impossible to write a domain-specific optimization function
that violates the typing discipline of the object language.

7 Staged implementation

The intensional approach of the previous section introduces a layer of interpre-
tive overhead into the implementation (a problem we encountered in Section 4.1).
In the embedded approach this extra overhead was not present. To remove this
overhead [?] we employ the staging techniques already demonstrated in Sec-
tion 4.3.

The goal of this section is to stage the interpreter interp to obtain a simple
compiler comp. The transition from interp to comp is accomplished in a few
simple steps:

1. Stage the Mag datatype so that it contains (Code Int) instead of Int and
(Code Float) instead of Float. This allows us to know the units of a mag-
nitude at “compile time”, even though we will not know its value until “run
time”. The definition of CodeMag accomplishes this staging.
data CodeMag u

= CodePix (Code Int) where u = Pixel

| CodeCm (Code Float) where u = Centimeter

2. Stage the primitive functions on Mag values to work with this new type. We
follow the convention that the staged versions of helper functions are given
the same name but suffixed with an “S”.
pxTOcmS :: CodeMag Pixel -> CodeMag Centimeter
cmTOpxS :: CodeMag Centimeter -> CodeMag Pixel

pxTOcmS (CodePix i) =
CodeCm [| intToFloat (div $i $(lift scale)) |]

cmTOpxS (CodeCm f) =
CodePix [| round ($f #* $(lift (intToFloat scale)))|]

Note that these definitions differ from their unstaged counterparts only in
the addition of the staging annotations [| _ |] , $(_), and (lift _).

timesS :: CodeMag u -> CodeMag u -> CodeMag u
timesS (CodePix a) (CodePix b) = CodePix [| $a * $b |]

timesS (CodeCm a) (CodeCm b) = CodeCm [| $a #* $b |]

squareS a = timesS a a
betweenS a b c = [| $(leqS a b) && $(leqS b c) |]

Each of these staged functions is derived from the original in a systematic
way. In fact our work on using type annotations as specifications to bind-
ing time analysis [?,?] leads us to believe this process can be completely
automated. We also define a lifting function for magnitudes:

liftMag :: Mag u -> CodeMag u
liftMag (Pix i) = CodePix (lift i)
liftMag (Cm i) = CodeCm (lift i)

3. Stage the Region type so that it is defined in terms of CodeMag instead of
Mag. The definition of CReg (Compiled Region) accomplishes this staging.

type CRegion u = CodeMag u -> CodeMag u -> Code Bool

4. Redefine the region combinators and interpreter interp to manipulate CReg
values instead of Region values. The updated definition is given in terms
of the staged primitives from step 2. This is accomplished by comp and its
helper functions. First we stage the primitive region constructors:

circleS :: Mag u -> CRegion u
rectS :: Mag u -> Mag u -> CRegion u

univS :: CRegion u
emptyS :: CRegion u

circleS r x y = leqS (plusS (squareS x) (squareS y))

(liftMag (square r))
rectS w h x y =

[| $(betweenS (liftMag (neg w)) (plusS x x) (liftMag w)) &&

$(betweenS (liftMag (neg h)) (plusS y y) (liftMag h)) |]
univS x y = [| True |]

emptyS x y = [| False |]

Then we stage the region combinators:

transS :: (Mag u,Mag u) -> CRegion u -> CRegion u

convertS :: (CodeMag v -> CodeMag u) ->
CRegion u -> CRegion v

intersectS :: CRegion u -> CRegion u -> CRegion u
unionS :: CRegion u -> CRegion u -> CRegion u

transS (dx,dy) r x y = r (minusS x dx) (minusS y dy)
convertS t r x y = r (t x) (t y)

intersectS r1 r2 x y = [| $(r1 x y) && $(r2 x y) |]
unionS r1 r2 x y = [| $(r1 x y) || $(r2 x y) |]

Then we stage the interpreter:

comp :: RegExp u -> CRegion u
comp Univ = univS

comp Empty = emptyS
comp (Circle r) = circleS r

comp (Rect w h) = rectS w h
comp (Union a b) = unionS (comp a) (comp b)
comp (Inter a b) = intersectS (comp a) (comp b)

comp (Trans xy r) = transS xy (comp r)

comp (Convert trans r) = convertS (compTrans trans) (comp r)

compTrans :: CoordTrans u v -> CodeMag v -> CodeMag u
compTrans CM2PX = pxTOcmS
compTrans PX2CM = cmTOpxS

The structure of each staged definition is the same as the unstaged definition
modulo staging annotations. Once we stage the types to reflect what information
should be static (known at compile time) versus dynamic (known at run time),
the changes made to the definitions are completely systematic. In fact, we have
had some success in building automatic tools to accomplish this [?,?]. These
tools borrow from research on staging and binding time analysis from the partial
evaluation community. We believe it is possible to completely automate this task
once the types are staged.

8 Example Region language program

The DSL is still embedded, so we can apply the full power of the host language
in constructing region programs. For example, the code below constructs three
adjacent circles. The resulting data structure r is relatively large and compli-
cated.

f :: [RegExp Centimeter] -> RegExp Centimeter
f [] = Empty

f (x:xs) = Union x (Trans (Cm 2.0,Cm 0.0) (f xs))

c = Circle (Cm 1.0)
r = Convert CM2PX (Trans (Cm (#- 2.0),Cm 0.0) (f [c,c,c]))

prompt> r
(Convert CM2PX (Trans ((Cm -2),(Cm 0))

(Union (Circle (Cm 1))
(Trans ((Cm 2),(Cm 0))

(Union (Circle (Cm 1))

(Trans ((Cm 2),(Cm 0))
(Union (Circle (Cm 1))

(Trans ((Cm 2),(Cm 0)) Empty)
))))))) : RegExp Pixel

The intensional representation allows for domain-specific transformations like
our simplify function. Such transformations can dramatically reduce the size
and complexity of the region’s representation.

prompt> simplify r

(Union (Trans ((Pix -56),(Pix 0))
(Circle (Pix 28)))

(Union (Trans ((Pix 0),(Pix 0))
(Circle (Pix 28)))

(Trans ((Pix 56),(Pix 0))
(Circle (Pix 28))))) : RegExp Pixel

Staging allows the removal of all interpretive overhead incurred by creating an
intensional representation, so that our technique is no less efficient than the
embedded combinator approach (in fact, once the domain-specific optimizations
are used, DSL programs can be implemented more efficiently this way).

prompt> [| \(Pix a) (Pix b) ->

$(comp (simplify r) (CodePix [|a|]) (CodePix [|b|])) |]
[| \ (Pix x) (Pix y) ->

(x + 56) * (x + 56) + (y * y) <= 784 ||
(x * x) + (y * y) <= 784 ||
(x - 56) * (x - 56) + (y * y) <= 784

|] : Code ((Mag Pixel) -> (Mag Pixel) -> Bool)

A further optimization phase could eliminate common sub-expressions.

[| \ (Pix x) (Pix y) ->
let a = x + 56 in

let b = 784 - (y * y) in

let c = x - 56 in
a * a <= b || x * x <= b || c * c <= b

|] : Code ((Mag Pixel) -> (Mag Pixel) -> Bool)

The Region DSL can be interpreted in other ways (besides its denotation as a
characteristic function). For example, we can translate Region expressions into
PostScript. The PostScript for the following picture was generated by running
an alternative interpreter in Ωmega on the region program r defined above.

9 Related Work

Interpreters with Equality Proofs. Implementations of simple interpreters that
use equality proof objects implemented as Haskell datatypes, have been given
by Weirich [?] and Baars and Swierstra [?]. Baars and Swierstra use an untyped
syntax, but use equality proofs to encode dynamically typed values.

Phantom Types. Hinze and Cheney [?,?] have recently resurrected the notion of
“phantom type,” first introduced by Leijen and Meijer [?]. Hinze and Cheney’s
phantom types are designed to address some of the problems that arise when
using equality proofs to represent type-indexed data. Their main motivation
is to provide a language in which polytypic programs, such as generic traversal
operations, can be more easily written. Cheney and Hinze’s system bears a strong
similarity to Xi et al.’s guarded recursive datatypes [?], although it seems to be
a little more general.

We adapt Cheney and Hinze’s ideas to meta-programming and language imple-
mentation. We incorporate their ideas into a Haskell-like programming language.
The value added in our work is additional type system features (user-defined
kinds and arbitrary rank polymorphism, not used in this paper) applying these
techniques to a wide variety of applications, including the use of typed syntax,
the specification of semantics for patterns, and its combination with staging to
obtain tagless interpreters, and the encoding of logical framework style judg-
ments as first class values within a programming language.

Tagless Interpreters and Typeful Object-language Representations. The problem
of tags in interpreters has been addressed in a number of settings. Tag elimina-
tion [?] is, in terms of its results, the closest to this work. In this approach, a sep-
arate tag elimination phase is introduced into the meta-language. It transforms
a tagged residual program into a tagless one, guaranteeing that the meaning of
the residual program is preserved. There are two major drawbacks compared to
the approach outlined in this paper. First, a separate meta-theoretic proof is
required to show that tags will be eliminated from a particular object language
interpreter – there is no such guarantee statically. As our sample implementa-
tion shows, the staged interpreter we presented is tagless by construction. Second,
more particularly, we know of no tag elimination for an object language with
patterns.

The technique of manipulating well-typedness judgments has been used exten-
sively in various logical frameworks [?,?]. We see the advantage of our work here
in translating this methodology into a more mainstream functional programming
idiom. Although our examples are given in Ωmega, most of our techniques can
be adapted to Haskell with some fairly common extensions. Tagless interpreters
can easily be constructed in dependently typed languages such as Coq [?] and
Cayenne [?]. These languages, however, do not support staging, nor have they
gained a wide audience in the functional programming community. Construction
of tagless staged interpreters has been shown possible in a meta-language (pro-
visionally called MetaD) with staging and dependent types [?]. The drawback
of this approach is that there is no “industrial strength” implementation for
such a language. In fact, the technique presented in this paper is basically the
same, except that instead of using a hypothetical dependently typed language,
we encode the necessary machinery in a language which extend Haskell only
minimally. By using explicit equality types, everything can be encoded using the
standard GHC extensions to Haskell 98.

A technique using indexed type systems [?], a restricted and disciplined form
of dependent typing, has been used to write interpreters and source-to-source
transformations on typed terms [?]. Recently, Xi and Chen have used an encod-
ing similar to ours as a basis for meta-programming [?]: they provide a meta-
theoretical translation which embeds MetaML-style code into a datatype similar
to Exp: this allows them to use staging syntax, but manipulate well-typed terms
judgments “under the hood.” Where our work is different and complementary
is (a) that we consider an object language with patterns; (b) we use a similar
encoding to accomplish a slightly different goal (i.e., rather then give it as a
meta-theory for staged programming, we use staged programming to obtain ef-
ficient tagless interpreters). It would be interesting to see how our interpreter
could be implemented in their meta-language λcode.

Domain Specific Langauges. Hudak introduced the notion of a “domain-specific
embedded language” [?]. He argues that DSLs are “the ultimate abstraction”,
capturing precisely a certain domain of calculation, and suggests embedding a

DSL in a host language has the benefits of inheriting the infrastructure of the
host language.

The Pan compiler of Elliot et al. [?] uses similar techniques to ours here. They
use phantom types to partially ensure the well-typedness of object programs.
The safety guarantees are only as strong as the discipline of the programmer
who chooses to use the type safe interface constructors. The type system of
Ωmega, however, enforces the same constraints at the level of the actual type
constructors. Rhiger [?] proves that this style of programming provides safety
guarantees about programs that build object programs, but notes that all type
information is lost when deconstructing object programs in this way. This means
that the type checker may not accept certain well-typed transformations of object
programs. Cheney and Hinze motivate their work with a similar line of reasoning.

10 Discussion and Future Work

Finally, we discuss some outstanding issues and identify areas of future work.

Constructing Judgments and Other Applications. One final important consid-
eration is whether arbitrary typing judgments could be constructed at runtime.
In other words, could we write a parsing function that takes a string (or other)
representation of object-language programs and compute a typing judgment?
The problem is that the type of the judgment must be known statically, since,
strictly speaking, judgments for different object-language terms have different
types. Fortunately, there is a technique which allows us to construct just the
kind of parsing functions discussed above. The key to this technique is to use an
existential type, where the parsing function takes a textual representation of a
program and constructs a judgment of the type ∃τ.(Exp e τ). We do not have
the space here to further discuss the particulars here.

Another interesting set of meta-programs is source-to-source transformations.
In our setting, source-to-source transformations manipulate proofs of typing-
judgments – the Ωmega type system guarantees that all such transformations
respect the object-language types. Section 6.3 shows one transformation: an
optimizer for a simple DSL. Others we were able to implement, but do not discuss
here, include (1) substitution of well-typed terms of type t for a free variable of
type t and (2) a big-step evaluator. The key to implementing substitution is to
define an encoding for well-typed substitution judgments, as in the typed calculi
with explicit substitutions [?, for example].

Meta-language Implementation. The meta-language used in this paper can be
seen as a (conservative) extension of Haskell, with built-in support for equality
types. It was largely inspired by the work of Cheney and Hinze. The meta-
language we have used in our examples in this papers is the functional language
Ωmega, a language designed to be as similar to Haskell. We have implemented our
own Ωmega interpreter, similar in spirit and capabilities to the Hugs interpreter
for Haskell [?]. Recent work on adding staging constructs to Haskell (albeit in a
slightly different way [?]) or Objective Caml [?,?] indicate that adding staging to

industrial strength functional language implementation is feasible. Theoretical
work demonstrating the consistency of type equality support in a functional
language has been carried out by Cheney and Hinze. We have implemented these
type system features into a type inference engine, combining it with an equality
decision procedure to manipulate type equalities. The resulting implementation
has seen a good deal of use in practice, but more rigorous formal work on this
type inference engine is indicated.

Ωmega as a DSL Implementation Platform. We have shown how several fea-
tures of Ωmega allow the programmer to lower the cost of DSL implementations
by bridging the gap between embedded and intensional DSL representations. We
have advocated the use of well-typed object-language syntax representations, al-
lowing the implementors to write both type safe optimizations and translations
into other target languages.

Though the Region language is quite simple, the ideas presented here scale
up to larger expression languages with variables and environments. At OGI, we
have used these techniques to capture security type systems, temporal properties
of APIs, closedness of code, and others.

Polymorphism and Binding Constructs in Types. The language L1, presented
in this paper, is simply typed: there are no binding constructs or structures in
any index arguments to Exp. If, however, we want to represent object languages
with universal or existential types, we will have to find a way of dealing with type
constructors or type functions as index arguments to judgments, which is difficult
to do in Haskell or Ωmega. We are currently working on extending the Ωmega
type system to do just that. This would allow us to apply our techniques to object
languages with more complex type systems (e.g. polymorphism, dependent types,
and so on).

Logical Framework in Ωmega. The examples presented in this paper succeed
because we manage to encode the usual logical framework style of inductive pred-
icates into the type system of Ωmega. We have acquired considerable experience
in doing this for typing judgments, lists with length, logical propositions, and
so on. What is needed now is to come up with a formal and general scheme of
translating such predicates into Ωmega type constructors, as well as to explore
the range of expressiveness and the limitations of such an approach. We intend
to work on this in the future.

11 Acknowledgment

The work described in this paper is supported by the National Science Foun-
dation under the grant CCR-0098126. We also wish to thank our thesis advisor
Tim Sheard for countless hours of discussion on these and similar topics.

	Meta-Programming with Typed Object-language Representations
	Emir Pašalic and Nathan Linger
	Introduction
	`39`42`"613A``45`47`"603Amega: A Meta-language with Support for Type Equality
	Type Equality in `39`42`"613A``45`47`"603Amega
	User-defined kinds
	An Introduction to Staging

	A Language With Patterns
	Syntax
	Meta-language Formalization
	Static Semantics
	Variables
	Patterns
	Expressions

	Dynamic Semantics
	The Tagging Interpreter
	The Tagless Interpreter
	Expressions: eval.
	Variables: evalVar
	Patterns: evalPat.

	The Staged Interpreter
	Improved Staged Interpreter

	The Region DSL: Embedded Implementation
	Magnitudes
	Regions
	Primitive regions
	Region combinators

	Intensional implementation
	Type relations
	Interpreters for free
	A simple optimizer

	Staged implementation
	Example Region language program
	Related Work
	Discussion and Future Work
	Acknowledgment

