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Abstract
This paper addresses the question of how to extend OCaml’s
Hindley-Milner type system with types indexed by logical propo-
sitions and proofs of the Coq theorem prover, thereby providing an
expressive and extensible mechanism for ensuring fine-grained pro-
gram invariants. We propose adopting the approached used by Shao
et al. for certified binaries. This approach maintains a phase dis-
tinction between the computational and logical languages, thereby
limiting effects and non-termination to the computational language,
and maintaining the decidability of the type system. The exten-
sion subsumes language features such as impredicative first-class
(higher-rank) polymorphism and type operators, that are notori-
ously difficult to integrate with the Hindley-Milner style of type
inference that is used in OCaml. We make the observation that
these features can be more easily integrated with type inference if
the inference algorithm is free to adapt the order in which it solves
typing constraints to each program. To this end we define a novel
“order-free” type inference algorithm. The key enabling technology
is a graph representation of constraints and a constraint solver that
performs Hindley-Milner inference with just three graph rewrite
rules.

Categories and Subject Descriptors D.3.3 [Programming Lan-
guages]: Language Constructs and Features — Polymorphism,
Data types and structures

General Terms Languages, Theory

Keywords Type Inference, Polymorphism, Type Operators, Sys-
tem F, Dependent Types, Indexed Types, Theorem Proving

1. Introduction
While there have been several approaches to introducing ideas
from dependent type theory into traditional programming language
deisgn [2, 3, 15, 31] it is often an explicit goal of these approaches
to automate the construction of proofs [5, 12, 31, 38]. In princi-
ple, automating the proofs can make programming easier. In re-
ality, whether or not this is the case is a complex human-factors
question. An alternative approach equally worthy of exploration
to make the underlying proof explict, to use a well-developed and
well-establishing proof theory, and to integrate the proof theory di-
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reclty into a tradtional programming language design. In particu-
lar, predictability is a goal both in the design of type systems and
proof theory, and direct approach to combining the fruits of both
may stand the best chance of yielding the most predictable design.
In contrast, decision procedures are often the result of of a deep
understanding of particular properties of specific subsets of prov-
able propositions, and it making them predictable to a programmer
might require explaining many of their internal (and algorithmic)
details.

Our goal is to explore the language design approach that first
proposed by Shao et al. in the context of intermediate language
design [30], and was later advocated in the context of source-
language design by Pasalic, Taha and Sheard [22]. For the purposes
of source language design, however, both these works assumed
that the computational language being extended is explicitly typed,
rather than being based on Hindley-Milner inference. This paper
describes Concoqtion, a conservative extension of OCaml’s type
system with the terms of the Coq proof theory, and addresses the
key technical problems that arise in this setting. This is particularly
challenging because the extension subsumes impredicative first-
class polymorphism and type operators. Considerable research has
gone into inference in the presence of first-class polymorphism [10,
11, 18, 23, 29, 36], whereas much less research has gone into
integrating type inference with type operators, with Pfenning’s
partial inference as a notable exception [25].

What distinguishes our appoach is its simplicity, predictability,
and indisputable expressive power. Instead of developing a new
type system with incremental goals, we focus on developing a more
extensible constraint-based inference algorithm for the Hindley-
Milner type system. This allows us to directly integrate a Hindley-
Milner system with, for example, the Coq proof theory. The key
technical insight behind the new inference algorithm is to represent
constraints and types in a directed acyclic graph and to accomplish
constraint solving by graph rewriting. Only three rewrite rules are
required to solve the Hindley-Milner constraints. We then extend
the inference algorithm to handle indexed types. This extension
adds new kinds of constraints and rewrite rules but does not change
or interfere with the Hindley-Milner constraints or rewrite rules.

Background Linking the computational to the logical language
involves adding first-class polymorphism to the computational lan-
guage, where the parameters may range over entities in the logical
language (which includes but is not limited to the the computa-
tional language types). Furthermore, Coq functions may be used
inside the computational type expressions as type operators, mak-
ing Concoqtion effectively a superset of Fω . Our key observation
is that Hindley-Milner type inference can be made more robust by
making the algorithm order-free, that is, if the algorithm is free to
adapt the order in which it infers types for expressions within the
program. Consider the following program (Λa. e stands for type
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abstraction )
(fun f →f .|int| 1) (Λa. fun x:a →x)
If the inference algorithm traverses the syntax in the usual order
(as in algorithm W), then it can not infer the type of f .|int|
because the type of f is unknown. However, if the inferencer first
considers Λa. fun x:a →x and the topmost application, it can
infer the type ∀a. a→a for f, which then allows the inferencer to
infer the type int→int for the type application.

Constraint-based inference algorithms, such as HM(X) of Oder-
sky, Sulzmann, and Wehr [19], provide a first step towards an
order-free algorithm by separating inference into two parts: con-
straint generation and constraint solving. However, for the Hindley-
Milner type system, it is non-trivial to completely separate con-
straint generation and solving. Last year Pottier and Rémy [28] de-
fined the first constraint-based Hindley-Milner inference algorithm
with complete separation.

The constraint solver of Pottier and Rémy, while mostly order
free, still imposes some ordering restrictions, presumably for effi-
ciency reasons. However, their ordering restrictions are more than
necessary for performance. In this paper we lift the few remaining
order restrictions. The key is to represent constraints in a directed
acyclic graph (including instantiation constraints) and to express
the constraint solver as a set of graph rewriting rules. The result-
ing algorithm is order-free and it is simple and intuitive, requiring
only three rewrite rules. Also, the graph-based formalism closely
matches the data-structures used in Concoqtion type inferencer im-
plementation.

With an order-free type inference algorithm in hand, it is
straightforward to perform inference in the presence of first-class
polymorphism and type operators. The solving of constraints in-
volving type application and type operators is delayed until the in-
put types become known. In the case of a type application e .|t|,
the result type remains unknown (a type variable) until a universal
type is inferred for e, at which time the result type is updated to
the instantiation of the universal with t. In the case of a type ex-
pression that is a type operator application, unification with other
types is delayed until the input to the operator has been inferred.
Of course, unification of two identical type operator applications
proceeds immediately.

Like the other approaches to inference in the presence of first-
class polymorphism, our type inferencer does not guess universal
types, but instead requires some annotations from the programmer
and then propagates the annotations. Unlike other approaches, we
use our order-free Hindley-Milner inference algorithm to propagate
annotations. Most other approaches rely on bidirectional type infer-
ence (part of local inference) to propagate annotations [26, 36, 38].
We hypothesize that our approach propagates annotations to more
locations and is easier to understand for functional programmers
familiar with ML-style inference as they can continue to rely on
their intuitions. In Section 5 we compare our approach with these
other techniques in more detail.

Road Map and Contributions To help give the reader an intuition
of what it is like to program in Concoqtion, we begin with a brief
introduction to the language, illustrating its features with examples
(Section 2).

Our first contribution is the first order-free inference algorithm
for the Hindley-Milner type system.

The algorithm is sound, complete, and terminates. We present
the algorithm first in the simpler setting of OCaml-the-calculus
(Section 3) for two reasons: first, to present the ideas without the
distractions of the Concoqtion extensions; second, to underscore
the essential modularity of our formal development: the sets of
constraint generation and solving rules are augmented, but the
existing rules are not changed, by the subsequent extensions of
the inference algorithm. We hypothesize that our Hindley-Milner

inference algorithm can be used as a departure point for many other
extensions to the Hindley-Milner type system both in theory and
implementation.

Our second contribution is to extend the order-free inference al-
gorithm to handle the additional features of Concoqtion (Section 4),
which include impredicative first-class polymorphism and type op-
erators. We characterize the extended inference algorithm by es-
tablishing its relationship to two type systems: the first type system
(Section 4.2) has a traditional presentation and provides a lower
bound on the capabilities of the inference algorithm. The second
type system (Section 4.5) is novel, and accepts exactly the same
set of programs that our inference algorithm accepts. The two type
system differ in that the first only treats the subset of Concoqtion
where all type applications are explicitly annotated with the univer-
sal type being eliminated. The extended inference algorithm termi-
nates, and is sound and complete with respect to both type systems.

In other words, the inference algorithm presented here is pre-
dictable the sense that in that it propagates types (and type annota-
tions) according to the Hindley-Milner constraints that many func-
tional programmers are familiar with. This is formalized by show-
ing completeness with respect to the Concoqtion type system, for
which there exists a declarative specification for our inference algo-
rithm. Specifying this type system requires care, because the naive
combination of the Hindley-Milner rules with the Fω rules results
in a type system for which there can be no complete algorithm [35].
The problem can be reduced to higher-order unification [25], which
is also undecidable problem, and using a semi-decision procedure
results in unpredictable behavior. To deal with this problem, and
following the standard solution, we refrain from guessing univer-
sal types. For example, the following Concoqtion term is not well-
typed because there is no way to propagate (using Hindley-Milner
rules) a universal type to f. (The concrete Concoqtion syntax uses
e .|t| for type application.)

fun f →f .|int| 1

Unlike other approaches, we exhibit a type system that precisely
specifies the terms that are accepted by our inference algorithm,
that is, we provide completeness. This is achieved by a novel type
system that is not allowed to guess polymorphism.

A prototype implementation of Concoqtion, implemented as a
modification of the OCaml 3.08 compiler, is available online [1].
An accompanying technical report [21] details the proofs and for-
mal definitions that we did not have the space to present in this
paper.

2. Design of Concoqtion
Concoqtion extends OCaml by allowing Coq [34] terms to appear
in OCaml types. A Coq term c can appear in a Concoqtion type
in the form of a tick type, written ’(c). Concoqtion is explicitly
kinded, and uses Coq terms for its kinds. In particular, there is a
Coq constant kind ot:Set1. Furthermore, for each OCaml type
constructor (t1:k1,...,tn:kn) t, there is a constant in Coq,
named OT_t : k1 →... →kn →ot that embeds the type into
Coq. For example, the types ’(OT_int) and int are interchange-
able in Concoqtion.

Concoqtion has explicit first-class polymorphic types, where
type variables can range over both OCaml types and Coq values.
Similarly, we extend OCaml data-types so that they can be param-
eterized over particular Coq values as well as OCaml types. This
allows us to connect particular values in OCaml with values in Coq.

For example, consider the Concoqtion data-type for lists of
specific length n (Figure 1a). The type constructor listN takes
two parameters: the first is the type of the list element; the second,

1 The name ot stands for ’OCaml type.’
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(a) Concoqtion

type (’a, ’n:’(nat)) listN =
| Nil : (’a, ’(0)) listN
| Cons of let ’m:’(nat) in ’a * (’a, ’(m)) listN

: (’a, ’(1+m)) listN

let rec app .|m:’(nat)| .|n:’(nat)|
(l1 : (_,’(m)) listN) (l2 : (_,’(n)) listN)
: (_,’(m+n)) listN =
match l1 as (’a:’(ot),’i:’(nat)) listN

: (’(a),’(i+n)) listN with
| Nil →l2
| Cons .|m2:’(nat)| (x,xs) →

Cons .|’(m2+n) |
(x, app .|’(m2),’(n) | xs l2)

(b) Haskell (GHC) using GADTs

data Z
data S x

data ListN a n where
Nil :: ListN a Z
Cons :: a →ListN a m →ListN a (S m)

data Sum m n s where
SumZ :: Sum Z n n
SumS :: (Sum a n r) →Sum (S a) n (S r)

data PlusLenL a m n where
PP :: (Sum m n sum) →(ListN a sum) →

PlusLenL a m n

app :: ListN a m →ListN a n →PlusLenList a m n
app Nil ys = PP SumZ ys
app (Cons x xs) ys =

case app xs ys of
PP sum rest →PP (SumS sum) (Cons x rest)

Figure 1. Lists with length in Concoqtion and in Haskell (GHC)

a Coq term of type nat is the length of the list. The data constructor
Nil is the empty list and thus has the type (’a, ’(0)) listN.
The data-constructor Cons has a universally quantified type: for
any natural number m, it takes a value of the element type ’a, a list
of length m, and constructs a list of length (1+m).

We can write functions over these extended data-types using an
extended form of pattern matching. For example, appending two
lists of length m and n, respectively, results in a list of length m+n.
This invariant is captured in the type of the concatenation function:

app : ∀m,n : ’(nat). (’a,’(m)) listN
→(’a,’(n)) listN →(’a,’(m+n)) listN

Note also the explicit universal quantification, written ∀X:kind.t.
Values of universally quantified types are constructed by explicit
type abstraction (written ΛX:k.e). Analogously to function in
OCaml, Concoqtion provides OCaml-style let-bound syntax for
type application, written
let f .|X:k| ... = e.
The same extended syntax can be used to give explicit type signa-
tures for functions with first-class polymorphism.

The function app deconstructs the first list l1 (of length n)
using a match form. In each case, the signatures of listN data-
constructors are used to introduce more assumptions about type
parameters. Thus, if l1 is the empty list (Nil), then the first branch
can rely on the fact that n is zero. It is easily verified that the re-
sult of the branch l2 has the required type ((’a,’(n+m)) listN,
since ’(0+m) = ’(m)). In the second branch, the length of l1
is assumed to be ’(1+m2) and the sub-list xs has the type

(’a,’(m2)) listN. The result of the branch has the length
(1+(m2+n)) which is equal to the desired length ’(m+n).

Let us compare the Concoqtion implementation of app to a sim-
ilar implementation in Haskell using GADTs [24] (Figure 1b, fol-
lowing an example of Sheard’s [31]). The data-type ListN plays
the same role as listN in Concoqtion, except that the integer val-
ues of the length index are encoded as Haskell types built up of type
constructors Z and S. Aside from surface syntactic differences with
Concoqtion, in the sub-index m in the constructor Cons is quanti-
fied implicitly in Haskell. Similarly, when constructing values with
Cons in Haskell, the type application is implicitly inferred by the
type-checker.

The Concoqtion type of app directly expresses the intuitive
point that the length of two appended lists is the sum of their length.
In Haskell, however, we have no way of directly writing down the
type index m+n. Instead, we first encode what is means to be a
sum of two numbers in the auxiliary data-type Sum m n s: if we
can construct a value of type Sum m n s, than we have a proof
that m+n = s. Next, the Concoqtion type (’a,’(m+n)) listN is
represented by the Haskell type ∃s. (Sum m n s, List a s).

Both Concoqtion and Haskell examples use a kind of GADT
for representing lists which are computational data. In Haskell,
GADTs are used to encode propositions in a ”relational style.”
In Concoqtion, on the other hand, we are free to use GADT-like
notation for list values (for which GADTs are well suited), but
use the more concise and clear notation of Coq for properties.
Moreover, since proofs are constructed entirely in Coq and act only
at the level of types, they can be erased by the Concoqtion compiler
and incur no runtime overhead.

2.1 The Burden of Proof
Suppose we with to call a function in Haskell that took a list of
length m+n (PlusLenL a m n) but all we have is a list of length
n + m (PlusLenL a n m). To use the value available, we would
have to explicitly prove that addition is commutative by providing
a function of type Sum m n s→Sum n m s. Such a function can
indeed be built by recursively deconstructing an object of type
Sum m n s and rebuilding a Sum m n s.

What about Concoqtion? Again, suppose we had a value x of
type (’a, ’(m+n)) listN and what we really need is a value
of type (’a,’(n+m)) listN. Somehow, we must use the fact
that addition is commutative to convert between the two types.
Note, however, that the two types are not convertible (modulo Coq
reduction relations) to each other: we will have to prove them equal,
and use that proof to cast from one type to another. Such a casting
operator is a part of the standard Concoqtion library and has the
type ∀a:’(ot). ∀b:’(ot). ∀p:’(a=b). ’(a) →’(b).

In Concoqtion programs, we can use a special kind of declara-
tions, the coq ... end sections programs to construct such proofs
by inlining Coq proof scripts:

coq
Require Import Arith.
Lemma lemma1 : ∀elem, ∀m n, (m = n) →

(OT_listN elem m) →(OT_listN elem n).
intros; eauto. Qed.

end

Finally, we can combine lemma1 with a standard Coq library theo-
rem plus_comm to obtain the following function:

let comm .|a , m:’(nat), n:’(nat)|
(x:(’(a), ’(m+n)) listN) : (’(a),’(n+m)) listN =
cast
.|’(OT_listN a (m+n)), ’(OT_listN a (n+m)),

’(lemma1 a (m+n) (n+m) (plus_comm m n)) | x
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We note two points. First, the type-safe cast function in Con-
coqtion is generic and works for any types which we can prove
equal in Coq. Moreover, the proof of the commutativity of addition
is already a theorem in Coq and we can simply refer to it without
ever having to reprove it. Second, these proofs and properties live
entirely in the logical language and have no runtime cost, in con-
trast to Haskell, where proof objects for various logical properties
expressed as Haskell data-types must be manipulated at runtime.

2.2 Using Decision Procedures
Consider writing the function comm in DML [38] or Zenger’s in-
dexed type language [39]. The cast would not be necessary and
the equivalence m+n = n+m would be proved automatically by a
Presburger arithmetic decision procedure that is built into the type
checker. Clearly, this is less burdensome on the programmer than
our Concoqtion example above. However, in Concoqtion, the pro-
grammer has access to the decision procedures of Coq, which
greatly reduces the burden of proof. For example, the comm func-
tion can be written more concisely as follows:

let comm .|a, m:’(nat), n:’(nat)|
(x:(’(a), ’(m+n)) listN) : (’(a),’(n+m)) listN =
cast .|ˆ(eauto), ˆ(eauto), ˆ(omega;eauto)| x

In this example, the programmer uses an alternative form of the tick
type, written ˆ( [ goal| ] script). The (optional) goal argu-
ment specifies a proposition (in Concoqtion this is a kind),
e.g., (_,’(m+n))listN =(_,’(n+m)) listN.
Often this annotation too can be omitted, as it can be inferred from
the context. Next, the script argument is a (usually very short)
Coq proof script which instructs the theorem prover to use a partic-
ular decision procedure. For example, the above ˆ(omega;eauto)
instructs Coq to use the Presburger arithmetic decision procedure
omega together with the standard propositional manipulation pack-
age eauto.

The advantage of Concoqtion over the languages with the built-
in decision procedures is the support for greater logical expressive-
ness and graceful degradation: sometimes the proof that is needed
cannot be constructed by any one decision procedure, but can be
obtained by applying several such procedures, with minimal, but
necessary guidance by the user. For example, if the DML-style type
checker had to show that ’(x*x+2x+1)=(x+1)*(x+1), it would
fail; in Concoqtion this can be proven in Coq as a theorem, added
to the standard simpset, and let eauto use it.

Other proposals, including ATS [5], support programmer con-
structed proofs. The advantages of Concoqtion over ATS are pri-
marily pragmatic: rather than requiring the programmer to build
his proofs painstakingly from the ground up, using a relational no-
tation, he can simply make use of the numerous libraries, proofs
and decision procedures for Coq. In future versions of Concoqtion,
we also plan to integrate support for “proofs” by assertions and run-
time checks [9, 12, 22] as a kind of “rapid prototyping” for proofs.

2.3 The Hindley-Milner Type Inference
First an foremost, Concoqtion is backwards compatible with
OCaml, so let-polymorphism continues to work as expected:
let id x = x
let _ = (id 1, id false)
let rec map x ls = ...
let _ = map (fun x →x) [1;2;3]

First-class polymorphism in Concoqtion is treated separately
from let-polymorphism, with universal types separate from type
schemes. Concoqtion provides introduction and elimination forms
in the style of System F.
let f1 = Λa. fun (x:’(a)) →x
let f2 .|a| (x:’(a)) = x

let _ = f1.|int| 1
let _ = f2.|bool| false
let _ = f1 .|’(1+1)| 2 (* kind error! *)
let f (get : (∀ a. ’(a) list →’(a))) =
(get .|int| [1;2], get .|char| [’a’,’b’,’c’])

let church_num_list =
let zero .|a| f (x:’(a)) = x in
let one .|a| f x = f x in [zero; one]

let _ =
(List.hd church_num_list) .|int| (succ) 0

Concoqtion can perform partial inference at type application: a
programmer may omit the type argument and just indicate the
location of the type application.
let _ = f1 .|| 1

The first-class polymorphism interacts with Hindley-Milner
type inference in several ways. First, inference can propagate a
universal type to where it is needed in a type application. Note that
since we use an order-free inference algorithm, the annotations can
propagate in many directions and non-locally. If a universal type
cannot be propagated to the type application then the inferencer
reports an error.
let _ = (fun f →f .|int| 1)(Λa.fun x:’(a) →x)
let _ = fun f →f .|int| 1 (* error !*)
let h (f : (∀ a. ’(a) →’(a))) = f
let _ = fun g →let f x = g .|int| x in h g

In addition, let-polymorphic variables may be implicitly coerced to
have a universal type. In the following, the function h expects a
universally quantified argument.
let g x = x in h g
let succ x = x + 1 in h g (* error! *)

Tick types interact with type inference in interesting ways. Con-
sider the following example that uses a type operator f to describe
the type of the higher-order argument z.
(* choose : ’a →’a →’a *)
let choose x y = if true then x else y

let g .|f :’(ot →ot)|
(z: ∀t. ’(t) →’(f t)) (x:’a) (y:’b) =

let _ = choose x y
in choose (z .|’a| x) (z .|’a| y)

From choose x y the type inference algorithm deduces that the
types of x and y are the same, that is ’a = ’b. Applying z to x and
y gives result types f ’a and f ’b. We pass the results to choose,
so the inference algorithm needs to deduce that f ’a = f ’b,
which in fact it does given that ’a = ’b.

The following example, which appears as a motivating example
for MLF [11], is particularly challenging for type inferencers, and
serves to demonstrate the order-free nature of the Concoqtion type
inference algorithm. Note also that auto function below requires
impredicative polymorphism, since x is type applied to a universal
type.
type idT = ∀a. ’(a) →’(a)
let auto (x : idT) = x .|idT| x
let _ = ((choose id) succ, (choose id) auto)

The interesting point is that the type inferencer should not choose
how to instantiate choose too soon, i.e., at the first application to
id. Instead, the inferencer needs to look forward to the second
application, to succ in the first case and auto in the second. So
choose should be instantiated with ’a = int→int in the first
case and ’a = idT→idT in the second. The Concoqtion type
inference succeeds on this example because it does not prematurely
commit to a particular instantiation and instead proceeds to solve
constraints in an order-free manner.
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(MONOVAR)
x /∈ dom(Γ′)

Γ, fun x : τ, Γ′ ` x : τ
(POLYVAR)

τ = [αn 7→ τn]σ x /∈ dom(Γ′) {α1, . . . , αn} ∩ TV(Γ) = ∅
Γ, let x : σ, Γ′ ` x : τ

(APP) Γ ` e : σ → τ Γ ` e′ : σ

Γ ` (e e′) : τ
(LAM)

Γ, fun x : ρ ` e : σ

Γ ` (fun x → e) : ρ → σ
(LET)

Γ ` e : ρ Γ, let x : ρ ` e′ : σ

Γ ` (let x = e in e′) : σ

Figure 2. Milner’s type system.

3. Order-Free Hindley-Milner Type Inference
In this section we present a new sound and complete inference algo-
rithm for the Hindley-Milner type system. We show how Hindley-
Milner type inference can be reduced to (a) constructing a con-
straint graph based on an input term; (b) solving the constraint
graph by means of applying three simple rewrite rules. This presen-
tation of the algorithm forms the basis for extending the inference
algorithm to Concoqtion: the constraint generation and solving is
simply extended by adding new rules, but the core Hindley-Milner
subsystem remains unchanged.

The syntax of OCaml-the-calculus is shown below.

x ∈ X Term variables
α ∈ V Type variables
g ∈ G ⊇ {→,×, int, bool} Type constructors

ρ, σ, τ ::= α | g(τ, . . . , τ) Types
e ::= x | fun x → e | e e Terms

| let x = e in e

We often use infix notation instead of prefix notation for types and
drop parenthesis when the argument list is empty: int → int
instead of → (int(), int()).

We find Milner’s original presentation [17] of the Hindley-
Milner type system (Figure 2) better suited to our purposes than
the more commonly used Damas-Milner formulation [8]. There
are several differences between Milner’s original formulation and
the Damas-Milner variant: Milner’s original differentiates between
function and let-bound variables in the environment, so an envi-
ronment Γ is a sequence of bindings of the form fun x : τ or
let x : τ . Generalization (creation of type schemes) is never ex-
plicitly performed and instantiation is folded into the rule for let-
bound variables (POLYVAR). An explicit syntactic form for type
schemas is not necessary in this formulation. We write TV(Γ) for
the type variables occurring in the types of environment Γ. The no-
tation [αn 7→ ρn]τ stands for the type that results from simultane-
ously replacing all free occurrences of αi in τ with ρi, for i ∈ 1..n.

3.1 Inferring Hindley-Milner Types by Graph Rewriting
Our type inference algorithm consists of two stages: constraint
generation and constraint solving. Our algorithm takes as input a
term graph 2 which has a type variable vertex for the type of each
subterm and a box grouping together the types and constraints on
the terms in the right-hand side of a let. This box corresponds to the
constrained type schemas in the work of Pottier and Rémy [28].

The constraint generator then adds vertices and edges that repre-
sent types and that express the typing constraints. Type vertices are
labeled with the appropriate type constructor, or with ◦ in the case
of type variables. Constraints are represented by thick, red, undi-
rected equality edges and by thick red directed instantiation edges.
The constraint solver applies graph rewrite rules until no more rules
apply. At that point, the graph will either be in a solved form or it
will be erroneous.

2 The term graph is trivially constructed from an expression by considering
its abstract syntax tree as a graph.

Constraint generation. Figure 4 summarizes the constraint
generation rules. The constraint generator takes as input a graph
and returns an updated graph. In the graphical notation we use
here, the rectangular vertices represent term AST vertices. When
describing the constraint generation graphically, we use shadowing
to represent the vertices that are created by the constraint generator.
Similarly, the thick red edges are added by the constraint generator.
The constraint generation rules are more formally defined in the
accompanying technical report [21].

We walk through the steps for the following term:
let f = fun x →x in f 1
For each occurrence of a let-bound variable, such as the f in
f 1, the generator creates an instantiation edge from the box for
right-hand side of the let to the type of f. Moving outwards one
subexpression, the application f 1 requires its function to have a
function type and that its domain equal the argument’s type. This is
expressed by creating a new vertices for a function type and for its
dom and cod , and then placing an equality edge between the dom
and the argument’s type. Also, we add an equality edge connecting
the type of f to the new function type.

For functions, such as fun x →x, we create a function type
whose dom points to the type of the parameter and whose cod
points to the type of the body. An equality edge is added to connect
the type of the function to the new function type. A function-bound
variable such as x are required to have the same type as the binding
parameter, so an equality edge is added to connect them. The type
of a let expression is the type of its body, which we express by
connecting them with an equality edge. The constraint graph for
this term is shown in Figure 3a).
Definition 1 (Hindley-Milner constraint generator). We write G ⇒
G′ whenever G′ is derived by applying the rules of Figure 4 to all
term vertices in the graph G.
Remark 1. The constraint generator terminates on all term graphs.

Constraint solving. The constraint solver consists of just three
graph rewrite rules: unification, schema removal, and instantiation.
These rewrite rules are graphically depicted in Figure 5. The first
rewrite, unification, corresponds to the term reduction and variable
elimination steps in Martelli and Montanari’s classic unification
algorithm [14]. The unification rule relies on the following two
definitions.
Definition 2 (Vertex label compatibility). Two vertex labels a and
b are compatible (written a ≈ b) iff a = b or a = ◦ or b = ◦.
Definition 3 (Label merging).

merge(a, b) =

(
a if a = b ∨ b = ◦
b otherwise

The unification rule applies when two vertices are connected by
an equality edge and have matching labels, and merges the two
vertices into one vertex. Also, for each pair of out-edges with the
same label, it adds an equality edge connecting the targets of the
two out-edges. Figure 3a contains five equality edges. Applying
the unification rewrite to each of these results in Figure 3b.

The second rewrite rule, instantiation (Figure 5), removes an
instantiation edge. The rule duplicates the box associated with the
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Figure 4. Constraint generation.

right-hand-side of the let (copying all the vertices an edges in the
cloud) and then adds a type scheme vertex (labeled ς) and connects
it to the root of the duplicated box with an edge labeled “body.”
Finally, it then adds an equality edge between the type scheme and
the type of the variable. Duplicating the box includes duplicating
all edges that connect vertices inside the box to vertices outside
the box. For Hindley-Milner inference, the type scheme vertex is
not strictly necessary, but it will serve a purpose once we extend
the inference algorithm to Concoqtion. Applying the instantiation
rewrite rule to the graph Figure 3b produces the graph in Figure 3c.

The type scheme rewrite rule removes a type scheme vertex
when it is connected to a non-scheme vertex via an equality edge.
We apply this rewrite followed by a unification rewrite to go from
Figure 3c to Figure 3d. Two more applications of the unification
rewrite produce the final Figure 3e.

Definition 4 (Hindley-Milner constraint solver). Apply the rewrite
rules of Figure 5 in any order to any redex until there are no more
redexes. As a post-processing step, any type scheme vertices (ς) are
removed and replaced by their body vertex. We write G ↪→ G′ if
the constraint solver applied to G produces G′.

Remark 2. The graph rewriting system is confluent.

Definition 5 (Erroneous and Solved Graphs). If a graph G does not
contain any redexes and there are red edges (equality or instantia-
tion edges) then we call the graph G erroneous, solved otherwise.

An interesting aspect of our order-free inference algorithm is
that, in particular, the unification rewrites are orthogonal to the
instantiation rewrites. Unlike the inference algorithm of Pottier and
Rémy [28], our algorithm can perform unification rewrites in the
body of a let expression before solving all of the constraints in the
right-hand side of the let. Note that from an efficiency standpoint,
it is always safe to perform unification rewrites as they strictly
decrease the amount of work to be done. On the other hand, one
does need to take care with the order in which instantiation rewrites
are performed to avoid poor performance (although the ordering
doesn’t matter for correctness and termination). To minimize work,
one should always choose first an instantiation whose let’s right-
hand side is not the target of any other instantiation.

Our presentation immediately merges of nodes during unifica-
tion, which is inefficient. The performance can be straightforwardly

Unification

l1

l2

l1≈ l2 merge(l1,l2)

a

b

a

b

a

b

a

b

Schema removal

l2

l2 ≠ ς

ς
body

l1

l2

l1

Instantiation

ς body

Figure 5. Constraint solving by graph rewriting.

increased by using the standard union-find data-structure and al-
gorithm [33], which we do not show here as it would needlessly
complicate the presentation.

3.2 Soundness and Completeness
In this section we present the properties of order-free Hindley-
Milner type inference. Detailed proofs are in the accompanying
technical report [21].
Definition 6. We write (G, u) = G(e) to create a graph G with
a distinguished vertex u from the term e. The graph G includes
a separate type variable vertex for each term. We write T (u) to
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c ::= . . . | X | ?α | | * . . . Coq Terms
τ ::= . . . Types

| ∀ X:c. τ Universals
| ’(c) Tick types

γ ::= Type Patterns
| α Existential type variables
| ’X:c
| g(γ, . . . , γ) Type constructors

C ∈ C Constructors
e ::= . . . Terms

| Λ X:c. e Type abstraction
| e.|τ| Type application
| C.|τ, . . .|(e1, . . . , en) GADTs
| e : τ Type ascription
| match e as γ:τ with Case

π -> e
π ::= Patterns

| x
| C.|α:c, . . .|(π, . . .)

Figure 6. Syntax: Concoqtion extensions

convert from the graph representation of a type (rooted at u) to the
corresponding type.

Theorem 1. (Type inference terminates) If (G, u) = G(e) and
G ⇒ G′ then G ↪→ G′.

Theorem 2. (Type inference is sound) Let (G, u) = G(e) and
G ⇒ G′. If G′ ↪→ G′′ and G′′ is solved then ∅ ` e : T (type(u)).

Theorem 3. (Type inference is complete) Suppose ∅ ` e : τ and
let (G, u) = G(e) and let G ⇒ G′. Then G′ ↪→ G′′ and G′′ is
solved and there is a substitution S where S(T (type(u))) = τ .

4. Formalizing Core Concoqtion
In this section, we formalize a core calculus for Concoqtion and
extend our order-free type inference algorithm to handle the addi-
tional language features: tick types, first-class polymorphism, and
extended data types. We characterize our inference algorithm by
studying its relationship with two type systems.

The first type system is for a subset of Concoqtion. The only
restriction to terms is that the expression in a type application (uni-
versal elimination) must be fully annotated. We call this subset E-
Annotated Concoqtion. The type system for E-Annotated Concoq-
tion has the advantage of being described naturally as a type system
that results directly from combining the rules of a HM language and
Fω . We present an inference algorithm and show that it is sound and
complete for this system.

The second type system is for the whole of Concoqtion, al-
lowing programmers to omit some type annotations in type appli-
cations. This second type system precisely defines the well-typed
terms of Concoqtion. We show that the same inference algorithm is
sound and complete with respect to this type system

4.1 Syntax
The definition of Concoqtion’s syntax assumes that we can refer
to an existing syntax for Coq terms. It further assumes that Coq
term syntax includes three specific productions: X to denote the
use of a Coq variable, ?α to denote the use of a constant relating
to a type variable in the Hindley-Milner world, and * to denote the
universe of Hindley-Milner types. In other words, * will represent
the Concoqtion kind for Hindley-Milner types, which we called ot
in examples that used Concoqtion’s concrete syntax.

These requirements are expressed in the first line in Figure 6. In
reality, of course, the set of Coq terms is a powerful and expressive
language in its own right (cf. [34]), but these are the only relevant
syntactic assumptions needed to define this extension.

The rest of the figure defines the syntax for the calculus that we
will use for the meta-theoretic treatment in the rest of this paper.
Concoqtion types extend the types in an underlying Hindley-Milner
language, modeled in this case using types introduced in Section 3.
Concoqtion only adds two new productions to types: ∀X : c.τ
to represent universal quantification in the style of System F, and
’(c) to include arbitrary Coq terms in Concoqtion types. Note that
kind annotations are Coq terms. For convenience, kind annotations
will ocassionally be omitted, in which case the kind is assumed to
be *.

The Terms of Concoqtion are similarly an extension of those
of the Hindley-Milner language. For the type ∀X : c.τ , we pro-
vide Λ X:c. e as the introduction construct, and e.|τ| for
elimination. For E-Annotated Concoqtion, the elimination form is
(e : ∀X.τ).|τ|. The type inference algorithm would be incom-
plete with respect to the E-Annotated Type System if this restriction
were removed. In particular, this type system would require higher-
order unification to infer it in all cases. At the same time, it should
be noted that full annotation is overly conservative, since it can of-
ten be inferred from other parts of the program via our order-free
inference algorithm. In fact, these annotations are not required in
the source Concoqtion language. Precisely specifying when these
annotations can be omitted is nontrivial and the topic of Section 4.5.
With this in mind, we present the fully annotated system here be-
cause it allows us to express important aspects of our formalism
without overwhelming the reader with detail of the meta-theory of
the formulation presented in the next section.

Concoqtion Terms also include support for introducing and con-
suming values of a generalized algebraic datatype (GADT). The
data constructor C.|τ, . . .|(e1, . . . , en) follows the OCaml no-
tational convention, but is extended with a type application that de-
notes the type application of any locally bound type variables in the
type of the data constructor (See for example the constructors of
listN in Figure 1a). The match e as γ:τ with · · · expression
extends typical pattern matching used in a Hindley-Milner system.
The type pattern γ is used to bind the type indexes of the discrimi-
nated expression type to a set of Coq type variables in scope of the
type τ . The type τ itself specifies the return type of the match (See
for example app in Section ??). The pattern (π) for each case binds
local type variables as specified in the data constructors.

4.2 A Type System for E-Annotated Concoqtion
Figure 7 presents the type system for the core calculus of Concoq-
tion. First, we assume that there is a signature Σ which provides the
types of the data-constructors and kinds of type constructors. The
judgment ∆; Γ ` e : τ takes a type assignment Γ (as in Figure 2)
as well as a Coq type assignment ∆.

Universal quantification. The Coq type assignment ∆ is ex-
tended by the TABS rule when a new Coq variable X is bound.
The auxiliary judgment ∆ `C c : Set (not shown here) is the
Coq typing judgment for constructions; here it is used as kinding
judgment for the type variable X .

Conversion The conversion rule TCONV uses the Coq convert-
ibility judgment ∆ ` · = · to compare types for equality. This
is done by first representing the two types τ1 and τ2 as Coq con-
structions. In this way, we can reuse Coq’s notion of convertibility
without having to explicitly define it for Concoqtion types.
Definition 7 (Forth and back). There are two functions, forth
(F (·) : τ → c) and back (B(·) : c → τ) which take a type τ
and convert it to a Coq construction, of type *and vice-versa. Back
and forth are inverses of each other ([21]).
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∆; Γ ` e : τ

All the rules from Figure 2 modified to accept but ignore ∆.

(TABS)

∆, X; Γ ` e : τ
∆ `C c : Set

∆; Γ ` (ΛX:c. e) : ∀ X:c. τ
(TAPP)

∆; Γ `C τ : c
∆; Γ ` e : ρ

ρ = ∀X:c. σ

∆; Γ ` ((e:ρ).|τ|)
: σ[X 7→ τ ]

(TCONV)

∆; Γ ` e : τ1
∆ `C F (τ1) = F (τ2)

∆; Γ ` e : τ2
(TASCR)

∆; Γ ` e : τ

∆; Γ ` (e : τ) : τ

(TCONS)

Σ(C) = (Y0 : c0, . . . , Yn : ck)C.|X : c| of ρ : ρ′

∆; Γ `C F (τi) : ci for i = 1 . . . n

∆; Γ ` ej : ρj [X/τ ] for j = 1 . . . m

∆; Γ ` C.|τ1, . . . ,τn|(e1, . . . ,em) : ρ′[X/τ ]

(TMATCH)

∆; Γ ` e : g(τ1, . . . , τn) Σ(g) = (c1, . . . , cn)
∆ `C F (τi) : ci for i = 1 . . . n

S(γ) = g(τ1, . . . , τn)
∆ ` γ ∆ `C S(τ) : *

∆; Γ; γ; g(τ1, . . . , τn); τ ` πj ->ej for j = 1 . . . m

∆; Γ ` match e as γ:τ with (π -> e)m : S(τ)

∆; Γ; γ; τ ; τ ` π -> e

∆; Γ ` π : τ ⇒ ς; ∆′; Γ′ S′(γ) = ς
∆, ∆′; Γ, Γ′ ` e : S′(τr)

∆; Γ; γ; τ ; τr ` π -> e

∆; Γ ` π : τ ⇒ ς; ∆; Γ

∆; Γ ` x : τ ⇒ τ ; ·; x : τ

Σ(C) = (Zk : ck)C.|Ym : c′m| of ρn : g(τ ′
k)

∆, X : c′; Γ ` πj : ρj [Z/τ, Y /X] ⇒ ςj ; ∆
′
j ; Γ

′
j for j = 1 . . . n

∆; Γ ` C.|X|(π) : g(τ) ⇒ g(ςj);∪j∆
′
j ;∪jΓ

′
j

∆ `C τ = τ ∆ `C c : c

Figure 7. Type system for E-Annotated Concoqtion.

Definition 8 (Predefined Coq constants). For each type constructor
f , there exists a Coq constant, named OT_f, of appropriate type,
which represents it in Coq. For example, the ∀ type is represented
by the constant OT_∀: ∀A:Set, (A →ot) →ot.

Pattern matching. In Concoqtion pattern matching, additional
assumptions about the type g(τ1, . . . , τn) of the discriminated ex-
pression are introduced into the environment of each branch. For
example, recall the function app of Figure 1a: the type checker
knows that type parameter n is ’(0) in the Nil branch.

The declaration · · ·as γ : τ · · · specifies how the types of each
branch may vary depending on this extra contextual information
introduced by the patterns. The type pattern γ binds type variables
that are used in τ , and is matched against the the discriminated type
g(τ1, . . . , τn); the resulting substitution is applied to the return type
τ to determine the overall result type of the match statement.

Let us look more closely at the rule TMATCH. The first two
lines of antecedents simply check the discriminated expression,
and make sure that its type is well-kinded with respect to the
signature of the type constructor g. Next, the type pattern γ is
matched against the type of the discriminated expression to obtain
a substitution S which ranges over the type variables in the type
pattern γ. The next line ensures that the specified return type is well
kinded. The result of the entire match statement is the substitution
S applied to the declared return type τ .

Each case is checked with the auxiliary judgment

∆; Γ; γ; τin; τ ` π -> e

This judgment first determines the type of the pattern based on
the signature of data-constructors used in the patterns and matches
this type against the type pattern γ, obtaining the local context
substitution S′. The result of the branch is then S′(τ).

4.3 Type inference for Concoqtion
With an order-free inference algorithm established for the OCaml
core (Section 3), it becomes straightforward to extend the infer-
ence algorithm to handle the language features of Concoqtion: tick
types, first-class polymorphism, and dependent data types. We ex-
tend the algorithm by adding constraint generations rules for each
of the new syntactic forms, several new kinds of constraint edges,
and several graph rewrite rules.

Constraint generation. Figure 8 shows the new cases for con-
straint generation.

Type ascription rule simply introduces an equality edge between
the type of the expression e and the type annotation t. The rule for
type abstraction inserts a universal type and an equality edge con-
necting it to the type of the type abstraction. The rule for type ap-
plication inserts a universal instantiation edge from the type of e to
the type of the type application expression. The instantiation edge
also points to the type argument, which will be needed for the uni-
versal instantiation rewrite rule. The rule for data-type constructor
application finds the signature for the constructor C in the environ-
ment and then substitutes for each type parameter the given type
arguments. This produces the gray clouds shown in the diagram.
We add equality edges for each of the arguments and for the return
type.

Finally, we come to the match expression. Constraint genera-
tion for match is rather involved but not inherently difficult. Recall
that the unusual aspect of a type-indexed match is in each one of
the cases new information is introduced to the local scope by the
pattern and the result type of each case may be different. The re-
sult type of the match itself is independent of the cases (the local
information should not escape), and instead is specified by the an-
notation γ and τ . The result type of the match is the annotation τ ,
but with the type-indexed variables inferred from matching the type
of e with γ. We insert an equality edge between the type of e and γ
and between a copy of τ and the type of the match.

For each match case, we construct the subgraph on the right:
from the signature of the data-type and the pattern πi we construct
the pattern type (a cloud inside a dashed boundary). This type is a
“more specific” version of the discriminated expression e’s type in
that additional information may be obtained from the structure of
the pattern and the signatures of the data-constructors that appear
in them. For example, in Figure 1 we know that the Nil pattern
makes the type parameter n equal to ’(0). Additionally, the types
produced from the pattern depend on the type of the discriminated
expression (but not the other way around). To accomplish a one-
way transfer of information, we create a new kind of edge, the
match edge. The pattern type thus constructed (represented as a
cloud inside a dashed rectangle) type is unified with the γ to get the
bindings for the type-index variables in τ which provides a return
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Figure 8. Generating the constraint graph for Concoqtion. We add the cases for type ascription, type abstraction and type application, (data)
constructor application and pattern matching to the cases in Figure 4.

type specific to the particular case. The return type be equal with
the type of the body of the case (ei), so we draw an equality edge
between them.

Definition 9 (Concoqtion constraint generator). Apply the rules of
Figure 8 to each term vertex in the graph G to create a new graph
G′. We write G ⇒cq G′ for this process.

Constraint Solving Figure 9 shows the additional rewriting
rules used by the Concoqtion constraint solver.

Tick type rules. The top four rules deal with tick types. First,
if a tick type contains an application of a type constructor (a Coq
OT_ constant), we replace the tick with with add a vertex for the
type constructor and tick types for the arguments. Second, a Coq
existential variable, which is used to represent a Hindley-Milner
type variable, is expanded to the actual type variable vertex it
represents. Third, the representation of a universal type is expanded
to a ∀ vertex with a tick type in the body. Finally, if a construction
c1 can be reduced (using the semantics of Coq) to the construction
c2 (where c1 6≡ c2), then we update the tick type to c2. This
allows the constructions to be evaluated to weak-head normal form,
enabling other rewrites to fire.

The Coq construction in a tick type is the label of the vertex.
Thus, two ticked type vertices connected by an equality edge are
merged only if they are equal (i.e., convertible in Coq). Otherwise,
the unification rule does not apply until either both tick types are
expanded to other kinds of vertices, or until they become equal
through the application of the fourth tick rewrite rule. If the solver
can never remove the equality edge, the graph is (as defined before)
erroneous.

Type application.This rewrite rule eliminates an all-inst edge.
The body of the universal type is copied, with edges connecting
to the type parameter redirected to the type argument. We add an
equality edge connecting the new body with the target vertex of the
all-inst edge.

Universal/Scheme merging. This rewrite rule allows for inter-
operability between type schemes introduced by let-polymorphism
and explicit universal types. This rewrite rule applies when there
is an equality edge connecting a universal type and a type scheme.
The rewrite merges the type scheme vertex into the vertex for the
universal type and adds an equality edge between the targets of their
respective body out-edges.

Matching. The two rules for match edges are similar to unifi-
cation, except that information is allowed to flow only one way: if
the source and target labels match, the match edges are propagated
to their children, as with the unification rewrite rule. If the target
edge is an empty vertex (type variable) then the target is replaced
by a copy of the source.

Definition 10 (Concoqtion constraint solver). Apply the rewrite
rules of Figure 9 in any order to any redex until there are no more

Tick types
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Figure 9. Graph rewrite rules for Concoqtion constraint solver
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redexes. As a post-processing step, any type scheme vertices (ς) are
removed and replaced by their body vertex. We write G ↪→cq G′ if
the constraint solver applied to G produces G′.

4.4 Properties of Concoqtion Type Inference
The Concoqtion type inferencer terminates and it is sound and com-
plete with respect to the type system of Core Concoqtion (Figure 7).

Theorem 4. (Type inference is sound) Let (G, u) = G(e) and
G ⇒cq G′. If G′ ↪→cq G′′ and G′′ is solved then ∅; ∅ ` e :
T (type(u)).

Theorem 5. (Type inference terminates) If (G, u) = G(e) and
G ⇒cq G′ then G ↪→cq G′.

Theorem 6. (Type inference is complete) Suppose ∅; ∅ ` e : τ and
let (G, u) = G(e) and let G ⇒cq G′. Then G′ ↪→cq G′′ and G′′ is
solved and there is a substitution S where S(T (type(u))) = τ .

4.5 A Type System for Concoqtion
The language Concoqtion does not require type applications to be
annotated with the type of e, as in required by the conservative
type system. It is an interesting challenge to create a type system
(specification) that defines the well-typed terms of Concoqtion in
a way that exactly coincides with the Concoqtion type inferencer.
Naively adapting the type system of Figure 7 to cover un-annotated
type applications is a dead end because that type system would be
too powerful: it has the ability guess polymorphic types. Instead
we need to level the playing field and define a type system that
propagates types according to the rules of Hindley-Milner, but does
not guess types.

The relationship between a type inference algorithm and a type
system can be viewed as follows: the inferencer produces a cer-
tificate for the solution, and the type system verifies the certificate.
Traditionally, this means that the inferencer produces a type assign-
ment and the type system checks whether the type assignment is
valid. For our precise type system, we change the notion of certifi-
cate: the inference algorithm produces proofs that shows why terms
have particular types. The type system is simply the proof theory
(collection of inference rules) that specifies what constitutes a valid
proof that one type equals another type.

The judgment Γ ` eα ⇒ E produces a set of equations E from
a term where each subterm is labeled with a unique type variable to
serve as an unknown for its type. The judgment E ` τ = τ defines
the inference rules for types equality under the equations E. The
rules for both judgments are defined in Figure 10.

An expression eα is well-typed with τ if the set of equations is
consistent (there is no proof of false) and if τ is the most specific
type with a proof E ` α = τ . The reason we say “most specific”,
and not just any type, is that trivially we have E ` α = α, but we
do not want to say that α is the type of e.
Definition 11. (Concoqtion’s Type System) We say that a Concoq-
tion term e is well-typed with τ , written `cq e : τ if `cq eα ⇒ E
and E 6` ⊥ and τ = max{σ | E `cq α = σ}.

Theorem 7. (Concoqtion type inference is sound) Let (G, u) =
G(e) and G ⇒cq G′. If G′ ↪→cq G′′ and G′′ is solved then
`cq e : T (type(u)).

Theorem 8. (Concoqtion type inference is complete) Suppose `cq

e : τ and let (G, u) = G(e) and G ⇒cq G′. Then G′ ↪→cq G′′

and G′′ is solved and T (type(u)) = τ up to renaming free type
variables.

5. Related work
Full spectrum dependent types Several lines of research involve
enriching type systems by enabling types to depend on values. One

approach involves the notion of full spectrum type dependency [16]
in programming languages that are based on type theories [7, 13,
for example]. In this approach, types may depend on arbitrary
terms, thereby intermingling types and terms in a single language.
Cayenne [2] and Epigram [15] are examples of such programming
languages. The down side of full spectrum dependent typing is
that the language must be strongly-normalizing (and therefore not
Turing complete) to maintain decidability of type checking, and the
language must be pure (effect free) to maintain type soundness.

Generalized algebraic datatypes (GADTs) GADTs extend the
standard notion of algebraic data-types so that the type of a data
value may depend on what constructor is used to build it. This
basic form of dependency can be used to encode a surprising va-
riety of properties [4]. One of the first versions of GADTs was
introduced by Xi (called guarded recursive data-types [37]). In-
tegrating generalized algebraic data-types with ML-style type in-
ference has been the focus of recent research (Pottier and Régis-
Gianas [27], Stuckey and Sulzmann [32], and Vytiniotis, Weirich,
and Peyton Jones [36]). Several languages with type systems di-
rectly supporting GADTs have been proposed, such as First-Class
Phantom Types of Cheney and Hinze [6], extensions to the GHC
Haskell compiler [36], and Ωmega of Sheard [31].

The advantages of GADTs are they are a natural extension of
existing language features and type inference can be extended to
include them. The down side of GADTs is that to represent com-
plex invariants, one must encode them in many new data-types. The
proofs of such invariants must be constructed and manipulated by
programs, as values of those data-types. This can lead to complex
and verbose programs, as we show in Section 2.

Inference for First-Class Polymorphism Pfenning defines a par-
tial inference algorithm [25] for Fω that infers types for type appli-
cation but still requires the location of type application to be anno-
tated, as is the case for our system. Pfenning’s algorithm guesses
universal types, reducing the problem to higher-order unification,
which is undecidable, but there are semi-decision procedures. In
contrast, our algorithm does not guess universal types.

Local type inference, as developed by Pierce and Turner [26]
and later refined by Odersky, Zenger, and Zenger [20] is not con-
servative over ML programs, so it is not directly suitable for Con-
coqtion, which must remain backwards compatible with OCaml.

Odersky and Läufer [18] define an extension of the Hindley-
Milner type system with predicative first-class polymorphism.
Their algorithm infers the introduction and elimination of first-
class polymorphism and they allow for polymorphic coercions (via
instantiation) under function arrows. Their algorithm reduces the
type inference problem to first-order unification under a mixed pre-
fix. Odersky and Läufer do not treat type operators or impredicative
polymorphism, as we do in this work.

Garrigue and Rémy [10] conservatively extend ML with first-
class polymorphism, with explicit introduction and semi-explicit
elimination forms, and they distinguish between type schemes and
universal types, as we do. However, their inference algorithm is
not order-free, so their algorithm rejects the following program,
whereas ours accepts.

fun f →if true then f.|| f
else (f : ∀a. ’(a) →’(a))

Garrigue and Rémy do not address type operators in this work.
Le Botlan and Rémy [11] define an extension to the Hindley-

Milner type system with impredicative first-class polymorphism,
called MLF . Their type inferencer infers type applications, whereas
in our system the programmer must identify the location of type
applications. On the other hand, our inferencer handles type op-
erators while MLF does not. Our inferencer is similar to MLF in
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Equation Generation Γ ` eα ⇒ E

x /∈ dom(Γ′)

Γ,fun xα, Γ′ ` xβ ⇒ {α = β}

x /∈ dom(Γ′)
dom(S) ∩ FTV(Γ) = ∅

Γ,let xα, Γ′ ` xβ ⇒ {S(α) = β}
Γ,fun xα ` eβ ⇒ E

Γ ` (fun xα → eβ)γ ⇒ E ∪ {γ = α → β}

Γ ` eα ⇒ E1 Γ ` e′β ⇒ E2

Γ ` (eα e′β)γ ⇒ E1 ∪ E2 ∪ {α = β → γ}

Γ ` eα ⇒ E Γ,let xα ` e′β ⇒ E′

Γ ` (let x = eα in e′β)γ ⇒ E ∪ E′ ∪ {β = γ}
Γ, X : c `cq eα ⇒ E

Γ `cq (Λ X:c. eα)∀ X:c. α
⇒ E

Γ `cq eα ⇒ E

Γ `cq (eα.|τ|)β ⇒ E ∪ {(α = ∀ X:c. σ =⇒ β = σ[X 7→ τ ])}
Γ ` eα ⇒ E

Γ ` (eα:τ)γ ⇒ E ∪ {γ = τ, α = τ}
. . .

Equational Theory of Types E ` τ = τ

(AX) τ1 = τ2 ∈ E

E ` τ1 = τ2
(REFL)

E ` τ = τ
(SYM) E ` m1 = σ = τ = m2

E ` m1 = τ = σ = m2
(TRANS) E ` τ = m1 E ` τ = m2

E ` τ = m1 = m2

(UNIFY)
E ` g(τ1, . . . , τn) = g(σ1, . . . , σn) = m

E ` τi = σi
(S-FUN) E ` τ1 = τ2 = m

E ` S(τ1) = S(τ2)
(S-CONG)

E ` S(g(τn)) = g(σn) = m

E ` S(τi) = σi

(S-BND)
α /∈ dom(S)

E ` S(α) = α
(ERROR)

E ` g(τ1, . . . , τn) = g′(σ1, . . . , σn) g 6= g′

E ` ⊥
(MP)

(τ1 = τ2 =⇒ τ3 = τ4) ∈ E E `cq τ1 = τ2

E `cq τ3 = τ4

Figure 10. Precise Type System for Concoqtion

that both have the ability to postpone solving constraints until more
information becomes available, as we showed in Section 2.3. The
MLF inferencer achieves this by enhancing universal types with
constraints which can summarize partial solutions. In contrast, our
approach uses standard universal types but uses an order-free infer-
ence algorithm.

Vytiniotis, Weirich, and Peyton Jones introduce Boxy Types [36]
as a way to integrate impredicative first-class polymorphism with
the Hindley-Milner type system. They do not address type op-
erators. Their system uses local type inference to infer type ap-
plications at function applications and to propagate annotations.
Our system does not infer type applications but it propagates an-
notations to more locations. For example, with Boxy types, only
monotypes are inferred for function parameters when the function
is processed in inference mode. So, for example, they do not in-
fer a type for g in the following example, whereas the Concoqtion
inferencer does infer a type for g.

let h (f : (∀ a. ’(a) →’(a))) = f
let _ = fun g →h g

They show that their inference algorithm is sound and complete
with respect to their “boxy” type system. We plan to investigate
the relationship between their type system and the type system of
Concoqtion.

Peyton Jones, Vytiniotis, Weirich, and Shields [23] in ear-
lier work integrated predicative first-class polymorphism with the
Hindley-Milner type system using the system of Odersky and
Läufer as their starting point. As in the above, they use local type
inference to propagate constraints, and so this system also does not
infer a type for the above program.

Rémy designed a stratified approach to integrating impredica-
tive first-class polymorphism with Hindley-Milner inference that is
conservative over ML [29]. The first phase performs “shape” infer-
ence and the second phase performs first-order type inference. His
algorithm infers predicative type applications but not impredicative
type applications. Additionally, it allows for polymorphic coercions
(via instantiation) under function arrows, according to the type con-
tainment relation, whereas ours does not. Rémy’s system does not
treat type operators and his inference algorithm is not complete.

6. Conclusion
The Concoqtion project aims to produce an industrial-strength pro-
gramming language with indexed types that allow the programmer
to cleanly express, prove and statically check important invariants
of real OCaml programs. The implementation of Concoqtion con-
sists of a modified OCaml compiler that includes the Coq proof
assistant as a subcomponent and allows the programmer to harness
the power and convenience of Coq in type-checking his programs.
A prototype implementation of Concoqtion (and the accompanying
technical report [21]) is available online [1].

We consider it a critically important goal for Concoqtion to
be fully backward compatible with existing OCaml code bases.
Satisfying our design goals requires addressing a key technical
problem: sound and complete integration of Hindley-Milner type
inference with the Calculus of Inductive constructions. We propose
a solution to this problem, and prove it correct. The key insight
for carrying this out was to formulate an order-free Hindley-Milner
inference algorithm based on a small number of graph-rewriting
rules.

6.1 Future work.
We single out some important directions for future work.

Syntax and type annotations. Our type inference algorithm can
in practice make the explicit type annotation burden surprisingly
light (see the Church numeral example in Section 2.3). However,
we have done little explicitly to address the sometimes redundant
type annotations required by match expressions, as was done in
the work of Pottier and Régis-Gianas [27]. Removing the need
for some of these annotation will make programming with indexed
types easier.

Singleton types. One notable feature of Concoqtion programs is
that they often have to duplicate information in both the computa-
tional and logical worlds. For example, natural numbers indexed by
Coq naturals are encoded as the following Concoqtion data-type:
type ’n:’(nat) mynat = Z : ’(0) mynat
| S of let ’m:’(nat) in ’(m) mynat : ’(S m) mynat

This leads to the programmer having to duplicate much work in re-
flecting Coq sets to the computational level. We have experimented
with an automatic way to derive singleton types such as mynat
from Coq inductive families to spare the programmer from having
to do it manually. The problem, however, is that in manually defin-
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ing such types, the programmer can chose to omit unnecessary in-
formation from the type indexes, encoding only the properties he
really needs.

Decision procedures. Exploring further ways to make Coq de-
cision procedures available to the programmer is a very important
future direction
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