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ABSTRACT
Writing (meta-)programs that manipulate other (object-)
programs poses significant technical problems when the object-
language itself has a notion of binders and variable occur-
rences. Higher-order abstract syntax is a representation of
object programs that has recently been the focus of several
studies. This paper points out a number of limitations of
using higher order syntax in a functional context, and ar-
gues that DALI, a language based on a simple and elegant
proposal made by Dale Miller ten years ago can provide
superior support for manipulating such object-languages.
Miller’s original proposal, however, did not provide any for-
mal treatment. To fill this gap, we present both a big-step
and a reduction semantics for DALI, and summarize the re-
sults of our extensive study of the semantics, including the
rather involved proof of the soundness of the reduction se-
mantics with respect to the big-step semantics. Because our
formal development is carried out for the untyped version
of the language, we hope it will serve as a solid basis for
investigating type system(s) for DALI.

1. INTRODUCTION
Programs are data. Nothing makes this point stronger than
the ever increasing need for reliable programs with verified
properties. As software systems become more complex, and
play increasingly important roles in critical systems there is
an ever increasing need for optimizing, analyzing, verifying
and certifying software.

Each one of these tasks involves automatic manipulation
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of programs or, meta-programming. As with any kind of pro-
gramming, effective meta-programming relies heavily on the
presence of the appropriate support from the (meta-) pro-
gramming language. The goal of this paper is to advocate a
novel approach to representing programs in a manner supe-
rior to the main contenders available today. Our approach
gives rise to a simple equational theory that can be used to
reason about the program equivalence of meta-programs.

1.1 Meta-Programming as Programming
It is our thesis that traditional programming language tech-
niques, including those from the operational, categorical, ax-
iomatic, and denotational traditions can be applied equally
effectively to meta-programming languages [15]. In many
instances, this means that the technical challenge is “inter-
nalizing” various meta-level operations, such as quotation
[17], evaluation [16; 9; 2; 15; ?], and type analysis [14; ?],
into a formal programming language, and subjecting them
to the same high standards developed by the semantics com-
munity. This approach has numerous pragmatic benefits,
including:

1. We succeed in magnifying the subtle features of the
operations under investigation, and, often times, in
addressing them in a systematic and complete man-
ner. From the software engineering point of view, this
translates into enhanced safety and reliability.

2. We succeed in assigning a uniform semantics to these
operations that must otherwise be carried out in an
ad hoc fashion. This can be done to the extent that
we can provide mathematically verified reasoning prin-
ciples for these operations in the form of equational
theories. From the software engineering point of view,
this translates into enhanced correctness.

3. We make these operations available to the programmer
in a uniform way, thus providing more him or her with
more control over the behavior of the system. From
the software engineering point of view, this translates
into enhanced predictability.

1.2 Synthesis vs. Analysis
There are two different kinds of program manipulation: pro-
gram synthesis, and program analysis. The combination of
the two is necessary for expressing general program trans-
formations. In what follows we outline the state of the art
in language support for both synthesis and analysis, and ex-



plain how the present work on DALI fits in the context of
analysis.

1.2.1 Synthesis and Multi-Stage Programming
Many recent studies have concentrated on language level
support for program synthesis: works on multi-level [5; 4;
10; 8] and multi-stage [17; 16; 9; 2; 15; ?] programming lan-
guages have investigated basic problems relating to language
support needed for program synthesis such as how to build
program fragments, how to combine smaller program frag-
ments into larger ones, and how to execute such fragments
in a user friendly, hygienic, and type-safe manner. But while
multi-stage programming constructs provide good support
for the construction and execution of object-code, they pro-
vide no support for analysis. In fact, adding constructs for
analyzing code fragments can severely weaken the notion of
observational equivalence in such languages [?].

1.2.2 Analysis and Higher Order Syntax
In contrast, substantially fewer studies have focused on lan-
guage level support for program analysis [?; 13; ?]. With
few exceptions (see for example Bjorner [?]), the most pop-
ular tool for these studies has been higher order abstract
syntax[12] (HOAS), and have taken place in the context of
logic programming languages [?]. In the remainder of this
paper we shall (without drawing too fine a distinction) re-
fer to all approaches to syntax that represent object-level
binding constructs by meta-language binding constructs in
a uniform way as higher-order abstract syntax.

A program analysis inspects the structure and environ-
ment of an object-program and computes some value as a
result. Results can be data- or control-flow graphs, or even
another object-program with properties based on the prop-
erties of the source object-program. Examples of these kinds
of meta-systems are: program transformers, optimizers, and
partial evaluation systems [7].

Program analyses are particularly difficult to write cor-
rectly if they must manipulate terms that have a notion of
statically scoped variables. The exact representation of the
variable is generally uninteresting, and often requires sub-
tle administrative changes so that it maintains its original
“meaning”.

The primary example of such administrative changes is
α renaming when the “direct” representation of variables is
used, and “shift” and “lift” operations when de Bruijn in-
dices are used. The first representation relies, typically, on
the use of state, a “gensym” operation, and the second rep-
resentation is generally considered “too human unfriendly”.
Because of this, representing object-programs using first or-
der algebraic data structures which use strings or other
atomic values to represent variables are notoriously hard to
manipulate correctly.

A more pressing concern is that implementing such oper-
ations once is not enough: They need to be implemented for
each object-language that has binding constructs. The basic
problem is therefore pervasive, it appears in almost every
interesting language.

The basic idea that we advocate is to (uniformly) exploit
the binding mechanism of the meta-language to implement
the binding mechanism(s) of the object-language, i.e. use

functions in the meta-language to implement binding in the
object-language. At first glance, this looks like a promising
idea, but a number of subtle problems arise. We explicate
these problems carefully in Section 3. The problems arise
because the functions of the meta-language have two prop-
erties which, while necessary for their use as functions, get
in the way of their use as binding mechanisms. These prop-
erties are: extensionality and delayed computation. Exten-
sionality means that one cannot observe the structure of a
function, other than by applying it to get a result. Delayed
computation means that computations embodied in a func-
tion do not occur until the function is applied. What we
need is a new kind of binding, without these properties.

In this paper, we develop such a binding mechanism by
refining some ideas of Dale Miller’s [?]. This new binding
mechanism can be incorporated into a functional language
with first-order datatypes, and together they can be used to
represent variable binding in object-languages. This mecha-
nism can be systematically reused. In addition, we develop a
sound syntactic system for reasoning about the equivalence
of functional programs that use this new binding mechanism.

1.3 Contribution
The contribution of this paper is simple and focused: a call-
by-value operational semantics for an untyped functional
programming language with an extension that supports first-
order datatypes (FOD) with binders.

We have applied the rigorous standards of language de-
sign and semantic analysis to both the host language (the
lambda calculus) and the extension and discovered that the
two are mutually compatible. The combined language en-
joys a non-trivial equational theory where beta convertibility
is a congruence, and is therefore unlikely to invalidate known
optimizations for a call-by-value functional language.

We believe that our present operationally-based study
complements the recent model-theoretic approach of Gab-
bay and Pitts [?], Hofmann [?], and Fiore, Plotkin, and
Turi [?]. For example, whereas Pitts and Gabbay’s recent
work emphasizes that a type system is required for their
language to ensure that “namefulness” doesn’t spread ev-
erywhere, our language is untyped, and does not appear to
give rise to any non-standard “namefulness” problems.

2. HOAS V.S. FIRST ORDER DATATYPES
The precise semantics of (meta-)programs depends crucially
on the basic properties of the representation of object-programs.
This question of representation is the focus of the present
study.

The essence of the representation we propose goes back at
least to Church [?]. The idea is to exploit the binding mech-
anism of the meta-language to implement the binding mech-
anism(s) of the object-language. This is also the essence of
Pfenning and Elliot [12] and Miller’ [?; ?; ?] higher-order
syntax (HOAS) representation. To illustrate the basic idea
of higher-order syntax, consider the definitions of Term and
Term’ below.



data Term
= App Term Term
| Abs String Term
| Const Int
| Var String

data Term’
= App’ Term’ Term’
| Abs’ Term’ -> Term’
| Const’ Int

In Term’ we represent the object-language lambda abstrac-
tion (Abs’) using the meta-language function abstraction.
This way, functions such as id and app are represented by
applying the Abs’ constructor to a meta-language function:

-- \ x -> x
id = Abs "x" (Var "x")

-- \f -> \ x -> f x
app = Abs "f"

(Abs "x"
(App (Var "f")

(Var "x")))

-- \ x -> x
id’ = Abs’ (\ x -> x)

-- \f -> \ x -> f x
app’ = Abs’ (\ f ->

Abs’ (\ x ->
(App’ f x)))

The HOAS representation (Term’) is elegant in that a con-
crete representation for variables is not needed, and that it is
not necessary to invent unique, new names when construct-
ing lambda-expressions which one can only “hope” don’t
clash with other names.

3. CRITIQUE OF HOAS
This flavor of HOAS seems like a great idea at first, but
careful inspection reveals a few anomalies. It works fine for
constructing statically known representations, but quickly
breaks down when trying to construct or observe a represen-
tation in a algorithmic way. We quickly provide a few small
examples that illustrate the problems we have encountered.

P1 Opaqueness: We cannot pattern match or observe
the structure of the body of an Abs’, or any object-
level binding, because they are represented as func-
tions in the meta-language, and meta-level functions
are extensional.

We can observe this by casting our Term’ example
above into a real program formulated in ML, and notic-
ing that id prints as Abs’ fn.

(* Actual ML Program Execution *)

- datatype Term’
= App’ of (Term’* Term’)
| Abs’ of (Term’ -> Term’)
| Const’ of int;

- val id = Abs’(fn x => x);
val id = Abs’ fn : Term’

P2 Junk [?; 3] : I.e., there are terms in the meta-language
with type Term’ that do not represent any legal object-
program. Consider:

junk = Abs’(\ x -> case x of App’ f y -> y
; Const’ n -> x
; Abs’ _ -> x)

No legal object-program behaves in this way.

P3 Latent Divergence: Because functions delay com-
putation, a non-terminating computation producing a
Term’ may delay non-termination until the Term’ ob-
ject is observed. This may be arbitrarily far from its
construction, and can make things very hard to debug.
Consider the function bad below:

bad (Const’ n) = Const’ (n+1)
bad (App’ x y) = App’ (bad x) (bad y)
bad (Abs’ f) = Abs’(\ x -> diverge(bad (f x)))

bad walks over a Term’ increasing every explicit con-
stant by one. Suppose the programmer made a mis-
take and placed an erroneous divergent computation in
the Abs’ clause. Note that bad does not immediately
diverge.

P4 Expressivity: Using HOAS, there exist (too many)
meta-functions over object-terms that cannot be ex-
pressed. Consider writing a show function for Term’

that turns a Term’ into a string suitable for printing.

show (App’ f x) = (show f) ++ " " ++ (show x)
show (Const’ n) = toString n
show (Abs’ f) = "\\ "++ ?v ++ " -> "

++ (show (f ?v))

What legal meta-program value do we use for ?v? We
need some sort of “variable” with type Term’ but no
such thing can be created. There are “tricks” for solv-
ing this problem [?], but in the end, they only make
matters worse.

Our approach to these problems is to cast our search
for solutions as an exercise in programming language de-
sign. The following subsections offer an informal discussion
of each problem and a potential solution by the introduc-
tion of additional language features, and provide examples
of how these language features might be used. Our biggest
challenge is to discover features that interact well, both with
each other, and with the existing features of the language
we wish to add them to.

3.1 Opaqueness
To solve the opaqueness problem a number of researchers
have investigated the use of higher-order pattern matching
[?]. The basic idea is that programmers use a higher-order
interface to the object-language because it is expressive and
easy to use, but the actual underlying implementation is
first order.

One tries to supply an enriched interface that gives pro-
grammers access to this first-order implementation in a safe
manner, that still supports all the benefits of a higher-order
implementation. To illustrate this consider the (not neces-
sarily semantics-preserving) rewrite rule f for object-terms
Term’, which might be expressed as:
f : (λ x.(e′ 0))→ (e′[0/x]).

Here, we use the notation, that a primed variable is a
meta-variable. Thus e′ is a meta-variable of the rule, and
e′[0/x] indicates the capture free substitution of 0 for x in
e′.

Higher-order pattern matching is a programming language
mechanism, that allows us to express that we wish to observe
the inner structure of meta-language abstraction, and that
parts of the body of this abstraction (i.e. e′) may have free
occurrences of x inside.

We use a higher-order pattern when we wish to analyze
the structure of a constructor like Abs’ which takes a meta-
function as an argument. Like all patterns, a higher order



pattern “binds” a meta-variable. The meta-variable bound
by a higher-order pattern does not bind to an object-term,
but instead binds to a function. This function captures the
subtlety that e′ might have free occurrences of x. Given
the bound variable, as input, it reconstructs the body of the
abstraction. Given a term as input, it substitutes the term
for each free occurrence of the bound variable in the body.

The bound meta-variable is a function from Term’ ->

Term’. We make this language mechanism concrete by ex-
tending the notion of pattern in our meta-language. Pat-
terns can now have explicit lambda abstractions, but any
pattern-variables inside the body of the lambda abstraction
are higher-order pattern-variables, i.e. will bind to func-
tions. Consider below, an example implementing the rewrite
rule above.

f (Abs’(\ x -> App’(e’ x)(Const 0))) = e’(Const 0)
f x = x

In this example the meta-function f matches its argu-
ment against an object-level abstraction (Abs’ ...) using
an object-level pattern. The pattern specifies that the body
of the matched abstraction must be an application (App’) of
a function term (e’ x) to a constant (Const 0). The func-
tion part of this object-application can be any term. This
term may have free occurrences of the object-bound variable
(which we write as x in the pattern, but which can have any
name in the object-term it matches against). Because of
this we use a higher-order pattern (e’ x) which applies e to
x to indicate that e’ is a function whose argument is the
object-bound variable x.

This extension differs from normal pattern matching, in
that neither meta-level abstractions (\ x -> ...) nor appli-
cations of meta-variables (e’ x) normally appear in regular
patterns.

If the underlying implementation is first order (like Term),
patterns of this form have an efficient and decidable imple-
mentation. The clause
f (Abs’(\ x -> App’(e’ x)(Const 0))) = e’ (Const 0)

would translate into an implementation using Term as fol-
lows:

f (Abs x (App e (Const 0))) =
let e’ y = subst [(x,y)] e
in e’ (Const 0)

The key advantage of this approach is that users get to use
the expressive and safe HOAS interface, and the substitution
function need not be written by the programmer but can be
supplied by the underlying implementation.

The solution of using (a hidden) underlying first order
implementation, but supplying a higher-order interface, ex-
tends nicely to term construction as well as term observa-
tion.

A construction like: (Abs’ f) :: Term’ could be trans-
lated into an underlying implementation based on first-order,
observable, data-structures (i.e. Term) by using a gensym
construct to provide a “fresh” name for the required object-
bound variable:
let y = gensym () in Abs y (f (Var y)).

Again both the gensym and the underlying first-order im-
plementation is hidden from the user.

3.2 Junk
Junk is a serious problem in that it allows meta-programs to
represent non-existent terms in the object-language. Junk
arises because the body of an object-binding is a compu-
tation (i.e. a suspended function), rather than a constant
piece of data. This causes two kinds of problems:

1. The computation can “observe” the bound variable,
and do ill-advised things like pattern matching. A
valid object-binding only “builds” new structure around
the variable. It does not observe the bound variable.

2. The computation can introduce effects. In this case the
computational effects of the meta-language, such as
nontermination, are introduced into the purely syntac-
tic representation of the object language. Even worse,
the effects are only introduced when the object-term
is observed. If a term is observed multiple times, it
causes the effects to be introduced multiple times.

3.3 Latent Divergence
So we see that that junk and latent divergence are really
two facets of the same problem. To fix these problems we
need a binding construct which preserves static scoping (like
normal meta-level functions) but which does not delay com-
putation. What we need is a binding construct which forces
computation “under the lambda” [15].

Ten years ago, Dale Miller proposed a new meta-level
binding construct for implementing HOAS in ML [?] which
did exactly this. He introduced a new binary type construc-
tor (a => b) which names the type of an object level binding
of a terms in b terms. The new type constructor was used in
place of the function type constructor to denote object-level
abstraction.

We introduce DALI, a language based upon a refinement
of Miller’s idea. We compare it to HOAS, and illustrate its
intended use by a number of examples. In DALI, the object-
binding mechanism is separate from the function construct
of the meta-language. This allows us to restrict the range
of junk, and the introduction of erroneous effects. Consider
our small lambda calculus example once again.

datatype Term
= App Term Term
| Abs Term => Term
| Const Int

Terms of type a => b are introduced using the meta-
language construct for object-binding introduction. The
expression level syntax of the meta-language, is analogous
to the syntax of the type constructor for object-level bind-
ings. For example: (#x => App(#x,Const 0)) :: (Term

=> Term). Here we use the hash (#x) notation to distin-
guish object-level variables from meta-level variables. An
important property of object-variables, is that they can-
not escape their scope. Like meta-level function binding,
object-binding respects static scoping. The => introduction
construct (#x => e) delimits the scope of #x to e. The key



property of object-binding is that evaluation proceeds under
=>.

Below are two different examples of constructing an object-
language program. The first using meta-level functions as
the binding mechanism, and the second using object-level
abstraction:

Abs’(\x -> bottom) Abs(#x => bottom)

The expression on the left uses a meta-language bind-
ing mechanism (λ abstraction). It succeeds in constructing
a representation of an object-language program which obvi-
ously has no meaning. The expression on the right, however,
does not represent any object-language program, since the
expression never terminates. Note that the effect on the left
has seeped into the object-language program representation
(junk), while on the right non-termination occurs before the
object-language program is constructed and thus is never
present in the object-language program itself.

A more sophisticated example is the copy function over
Term

copy (App f x) = App (copy f) (copy y)
copy (Const n) = Const n
copy (Abs(#x => e’ #x)) = Abs(#y => (copy (e’ #y)))
copy (x @ #_) = x

To those familiar with functional programming, the first
two clauses should be clear. The third clause, uses the
higher-order pattern matching introduced earlier, only ap-
plied here in the context of the new object-level binding
construct. Since evaluation passes under => diverging com-
putations will not delayed.

The fourth clause of the copy function is an artifact of
the object-level binding mechanism. Object-variables (#x)
introduced using the object-binding syntax: (#x => ...),
are a new type of constant. The actual name of such a
constant is not accessible to the programmer. There are two
operations that are necessary on object-variables, it should
be possible to distinguish them from other object-terms, and
it should be possible to compare them using equality, in
order to tell them apart.

Thus, functions over object-languages, must have a clause
for object-bound variables. Object-bound variables are dis-
tinct from all other constructors, and are common to all
object-languages. The pattern # matches any object-variable,
but fails to match other constructors. The binding says
nothing about the name of the variable it binds to. The no-
tation (x @ # ) introduces a meta-level variable x, bound
to the object-level variable matched by the object-pattern
# .

3.4 Expressivity
It is sometimes necessary to eliminate object-bound vari-
ables. This is done in one of two ways. First by applying
a higher-order pattern variable to some value x :: Term,
the occurrences of the bound variable will be replaced with
x.

This is not always sufficient since it does not provide any
way of transforming a object-binding into anything other
than another object-binding. This was the problem with
the show function (Section 3). This is why HOAS using

meta-level function binding cannot express some functions.
Object-level binding allows us to solve this problem.

The solution is a new language construct discharge. The
construct (discharge #x => e1) introduces a new object-
level variable (#x), whose scope is the body e1. The value of
the discharge construct is its body e1. The body e1 can have
any ground type, unlike an object-level binding (#x => e2),
where e2 must be an object term.

In addition, discharge incurs an obligation that the object
variable (#x) does not appear in the value of the body (e1).
An implementation must raise an error if this occurs.

For example consider a function which counts the number
of Const subterms in a Term.

count :: Term -> Int
count (Const _) = 1
count (App f x) = (count f) + (count x)
count (Abs(#x => e’ #x)) =

discharge #y => count (e’ #y)
count #_ = 0

Note how that the fourth clause conveniently replaces all
introduced object-bound variables with 0, thus guaranteeing
that no object-variable appears in the result. The obligation
that the variable does not escape the body of the discharge
construct may require a run-time check (though in this ex-
ample, since the result has type Int, no such occurrence can
happen).

If a programmer needs to treat individual object-bound
variables in different ways, he can use an environment pa-
rameter. Consider the program below, which is the correct
implementation of the function show.

show x = sh n [] x
where
sh n (App f x) = (sh n f) ++ " " ++ (sh n x)
sh n (Const n) = toString n
sh n (x @ #_) = lookup x n
sh n (Abs(#y => f #y)) =

let x = len n
v = x ++ (toString x)

in discharge #x =>
"\\ "++ v ++ " -> "

++ (show ((#x,v):n) (f #x))

Here the environment n is a list of pairs mapping object-
variables to strings. If the sh function is applied to an
object-variable it looks up its name in the environment. For
an object-abstraction, (Abs’(#x => f #x)), discharge in-
troduces a new object-variable, adds it to the environment,
and then applies the higher-order pattern variable f to the
introduced variable, and recursively produces a string as the
representation of the abstraction’s body.

Another example transforms a Term into its de Bruijn
equivalent form.

data DB
= DApp DB DB
| DAbs DB
| DVar Int
| DConst Int

DeBruijn env (App f x) =
DApp (DeBruijn env f) (DeBruijn env x)



DeBruijn env (Abs(#x => e’ #x)) =
discharge #y => DAbs(DeBruijn (ext env #y)(e’ #y))
where ext env v u =

if v=u then 0 else 1 + (env u)
DeBruijn env (Const n) = DConst n
DeBruijn env (z @ #_) = env z

4. EXAMPLES
In this section we use our language to express some classic
manipulations on object-languages.

• Lambda calculus syntax

datatype Lterm = App Lterm Lterm
| Abs Lterm => Lterm
| Const Int
| Prod Lterm Lterm

• Call-by-name Big-step evaluator for untyped lambda
calculus:

eval : Lterm -> Lterm
eval (Abs body) = Abs body
eval (App t1 t2)=
case eval t1 of

(Abs (#x => body #x)) -> eval (body t2)
eval (Const n) = Const n
eval (Prod x y) = Prod (eval x) (eval y)
eval (x @ #_) = x

• CBN lambda calculus (single step) reduction:

beta : Lterm -> Lterm -> Lterm
beta (Abs (#z => body #z)) t2 = body t2

• Complete development:

compdev : Lterm -> Lterm
compdev (Abs(x# => body #x))

= Abs(#w => compdev (body #w))
compdev (App (Abs(#x => body #x)) y)

= sub (Abs(#w => compdev(body #w))) (compdev y)
where sub (Abs(#z => e #z)) x = e x

compdev (App f x) = App(compdev f)(compdev x)
compdev (Prod x y) = Prod(compdev x)(compdev y)
compdev (Const n) = Const n
compdev (x @ #_) = x

• Substitution on Lterms.

find x [] = Nothing
find x ((y,v):ys) = if x==y

then v
else find x ys

subst: Lterm -> [(Lterm,Lterm)] -> Lterm
subst x env =
case find x env

Just t -> t
Nothing ->

case x of
v @ #_ -> v
Abs(#x => e #x) ->

Abs(#w => subst env (e #w))
App x y -> App(subst env x)(subst env y)
Prod x y -> Prod(subst env x)(subst env y)
Const n -> Const n

5. NEW FEATURES OF DALI
The language DALI contains some features that behave in
untraditional ways. It is useful to call attention to these
features.

• Object variable bindings: Unlike the meta-language
binding construct, the evaluation of an object-level ab-
straction ((#x => e)) proceeds “under” the =>.

• Ground (or equality) values: such values can be com-
pared for simple structural equality. The important
property of ground values is that they do not contain
functions. Only ground values are used to represent
valid object languages.

In order to compare object-language terms for equality
it is necessary to compare object-variables for equal-
ity. This must be a primitive in the language. Equality
on object-language types is important for two reasons.
First, it facilitates an important programming tech-
nique, illustrated in our de Bruijn notation example
above. Second, it makes possible higher-order pattern
matching (see below).

• Object-variable matching: Comparing object-language
terms for equality is not enough for the meta-programs
in our examples. We must be able to distinguish object-
level variables from other object-level terms. This is
the purpose of the ( #_ ) pattern.

• Higher-order pattern matching: A higher order pat-
tern variable (i.e. x in (\(#z => x #z)->e) is bound
to a (meta-level) function that returns the body of
the object-level abstraction after replacing the object-
variable with its argument. This in effects internalizes
substitution for bound object-level variables in object
programs. In order to implement such a scheme, it
is important that the object-abstraction body be an
equality type. I.e. we must somehow disallow types
of the form (a => (b -> c)). If we do not do this
then interesting anomalies may occur. For example
consider:

f (#z => x #z) = x (Const 0)

w = (#x => (\ y -> Prod #x (Const 5)))

If we apply f to w, we must build a meta-level function
x which replaces all occurrences of #x in
(\ y -> Prod #x (Const 5)) with (Const 0). It is
unlikely we can do this if functions are only exten-
sional.

6. A NOTE ABOUT “DISCHARGE”
In defining meta-programs, the use of discharge is often
crucial, since it allows for eliminating an object-level binding
and performing computations only on its body. However,
the binding’s body can be safely extracted only if there is
a guarantee that a heretofore bound object-level variable
cannot become free as a result of computation over its body.
There are two ways of adding discharge to DALI: First, as
a new language construct with appropriate reduction rules;
and second, as a function defined by the user on a per-
datatype basis.



In the present paper, we opt for the second design decision
in order to keep the core calculus of DALI, and its technical
development as small as possible. We present an example
of a user defined discharge function for the lambda-term
datatype (Lterm):

discharge (#w => t #w) =
case (#a => find #a (t #a)) of

(#z => True ) -> t ()
(#z => False) -> diverge

find var (App t1 t2) =
(find var t1) or (find var t2)

find var (Abs(#w=>b #w)) =
case (#z => find var (b #z)) of

(#z => True ) -> True
(#z => False) -> False

find var (Prod t1 t2) =
(find var t1) or (find var t2)

find var (Const n) = False
find var (x @ #_) =

if x = var then True
else False

The function discharge simply searches the body of an
object-level abstraction for the abstracted object-level vari-
able. If the variable is not found in the body, the program
simply returns the body itself. Otherwise, the computation
diverges.

It is important to note that in DALI, discharge, whether
added as a language construct or defined as a function, can
be used only on ground values, i.e., values that do not con-
tain suspended computation. Extending discharge to ap-
ply to values that contain abstraction causes confluence and
soundness problems similar to those described in section
8.1.

However, there appear to be situations where such a more
general version discharge is desirable. The example below,
implements a kind of evaluation for the familiar encoding of
untyped lambda terms, using an environment.

data Value = Vint Int
| Vprod Value Value
| Vfun Value -> Value

type Env = [(Lterm * Value)]

eval’ : Env -> Lterm -> Value
eval’ env (Abs (#x => b #x)) =

discharge #w =>
Vfun(\ y -> eval’ (extend #x y env) (b #w))

eval’ env (App t1 t2) =
case eval’ env t1 of

Vfun f -> f (eval’ env t2)
eval’ env (Const n) = Vint n
eval’ env (Prod x y)

= Prod(eval’ env x)(eval’ env y)
eval’ env (x @ #_) = env x

In the present version of the language it is impossible do
define a discharge function needed for the second clause
of eval’, since it would involve detection of free object-
bound variables in a term that contains an (extensional)
meta-level function. On the other hand, the example is in-
tuitively correct, and one can convincingly argue from the

definition of the function eval’ that the discharged object-
level variables indeed never do appear in the values of eval’.
Whether an appropriate mechanism can be introduced to ex-
tend discharge to such cases remains a question yet to be
fully addressed for DALI.

7. FORMAL SEMANTICS OF CORE DALI
7.1 Syntax
Figure 1 defines the various syntactic categories used in spec-
ifying Core DALI, including expressions E, ground values B,
values V, and contexts C.

Expressions in Core DALI include the lambda calculus
with naturals. Further, the language incorporates datatypes
(not necessarily just first-order), in addition to the following
specialized mechanisms:

• Object-level variables #z and binders (#z ⇒ e),

• Pattern matching over object-bindings λ(#z ⇒ x).e.

• Equality for object-bound variables #z =# #z′

• Test of whether an expression evaluates to an object-
level variable (isOVar e).

Values, ground values, and context are used in defining the
reduction semantics.

7.2 Core DALI vs. Example Language
The Core DALI has two (more primitive) forms of pattern
matching than the language used in the examples: one for
tagged values, one for object-level bindings. A third form of
pattern matching (for object-level variables) can be easily
encoded using isOVar .

Nested patterns are not allowed, nor are more complicated
higher-order patterns directly supported: each constructor
has one argument, and each higher-order pattern variable
has exactly one possible free object variable in it. These
simplifications make the formal development of Core DALI
more manageable, without losing generality: programs in a
more familiar language of our examples can be translated
into equivalent, albeit more verbose Core DALI expressions.

7.3 Big Step Semantics (λD)
Figure 2 defines the call-by-value (CBV) big-step semantics
for Core DALI. Note that this semantics does not require a
gensym function or any freshness conditions on variables:
All necessary variable renaming is handled by two stan-
dard notions of substitution [1], one for object-level variables
(#z ∈ Z) and one for meta-level variables (x ∈ X).

7.4 Reduction Semantics (λd)
Figure 1 defines the reduction semantics for Core DALI.

8. SUMMARY OF TECHNICAL DEVELOP-
MENT

The main technical result of our work to date is establish-
ing the confluence property for the reduction semantics de-
scribed above, and establishing (the rather non-trivial con-
nection) between the reduction semantics and big-step se-
mantics. In doing so, we have following closely Taha’s devel-
opment for the (substantially smaller) language λ−U [15; ?].



Syntax:

x ∈ X Normal variables := Infinite set of names
z ∈ Z Object variables := Infinite set of names
f ∈ F Tags := Infinite set of names containing True and False
F ⊂ F Tag sets = Finite subsets of F
e ∈ E Expressions := () | x | λx.e | e e | (e, e) | π1 e | π2 e | f e | λf∈F (f xf ).ef |

#z | #z ⇒ e | λ(#z ⇒ x).e | isOVar e | e =# e
C ∈ C Contexts := [] | λx.C | C e | e C | (e, C) | (C, e) | π1 C | π2 C |

λf∈F−{f ′}((fi xi).ei) + +(f ′ x).C | f C | (#z ⇒ C) | λ(#z ⇒ x).C |
isOVar C | C =# e | e =# C

b ∈ B Ground Values := () | (b, b) | f b | #z | #z ⇒ b
v ∈ V Values := () | λx.e | (v, v) | f v | λf∈F f xf .ef | #z | #z ⇒ v | λ(#z ⇒ x).e
ρ ∈ R Reductions := β1 | π1 | π2 | β2 | β3 | # | δisOVar

Notions of Reduction:

(λx.e) v −→β1 e[x := v]
π1 (v1, v2) −→π1 v1

π2 (v1, v2) −→π2 v2

(λf∈F∪{k}(f xf ).ef ) (k v) −→β2 ek[xk := v]
(λ(#z′ ⇒ x).e) (#z ⇒ b) −→β3 e[x := λy.(b[#z := y])]

#z =# #z −→# True()
#z1 =# #z2 −→# False() if z1 6= z2

isOVar #z −→isOVar True()
isOVar v −→isOVar False() if v 6= #z

Reduction Semantics:

e1 −→ρ e2

C[e1] −→ C[e2]
ρ ∈ R

e −→∗ e

e1 −→ e2 e2 −→∗ e3

e1 −→∗ e3

Figure 1: Syntax and Reduction Semantics (λd) of Core DALI

Taha’s development is based on Takahashi parallel reduction
and complete development methods for proving confluence
[19], and Plotkin’s “standardization” technique for showing
that reductions preserve observational equivalence.

This section summarizes our technical development and
states our main result, and explains how they were useful
to us in the process of designing the semantics for DALI.
The full details cannot be included in this paper, and are
presented instead in a technical report available on-line [11,
40 pages].

8.1 Confluence
The first result is confluence:

Theorem 1 (λd Is Confluent). ∀e1, e2, e ∈ E.

e1
∗ ←− e −→∗ e2 =⇒ (∃e′ ∈ E. e1 −→∗ e′∗ ←− e2)

First, we are not aware of a similar proof for a language with
datatypes. Furthermore, this result establishes the existence
of a confluent calculus for a language with notion of object-
level binders, and analysis on these terms. In particular,
this result means that DALI also provides a solution to the
problem of introducing intensional analysis to MetaML in a
“coherent” manner [?].

8.1.1 Role in Design of DALI
In addition to its technical role in arriving at our next re-
sult, establishing the confluence property played an impor-

tant role in our design process: It drew our attention to the
need for introducing the notion of ground-values, thereby
prohibiting any useful mixing of object-binder and function
spaces in datatypes.

In particular, analysis over object-level binders (β3 re-
duction) without the restriction of the argument to ground
values breaks the confluence, as is illustrated in the following
example:

Suppose the notion of reduction −→β3 (Figure 1) were
defined as follows (we emphasize the part different from the
standard definition by placing it into a box):

(λ(#z′ ⇒ x).e) (#z ⇒ v) −→β3 e[x := λy.v[#z := y]]

Now, consider the function f ≡ (λ(#w ⇒ x).x (λu.u)).
This function takes an object-level binding as its argument
and returns the body of the binding in which the object-
bound variable has been replaced with the identity function
λu.u. For the application of f to the object binding (#z ⇒
(λy.#z = #z)), there are two possible reduction sequences:

f (#z ⇒ (λy.#z = #z)) −→β3 λy.(λu.u) = (λu.u)
and

f (#z ⇒ (λy.#z = #z)) −→# f (#z ⇒ (λy.True()))
−→β3 λy.True()

Clearly, neither λy.True(), nor λy.(λu.u) = (λu.u) can be
further reduced by λd to a common reduct: a clear coun-
terexample for confluence.



() ↪→ () λx.e ↪→ λx.e

e1 ↪→ λx.e
e2 ↪→ e3

e[x := e3] ↪→ e4

e1 e2 ↪→ e4

e1 ↪→ λf∈F∪{k}(f xf ).ef

e2 ↪→ k e4

ek[x := e4] ↪→ e5

e1 e2 ↪→ e5

e1 ↪→ λ(#z′ ⇒ x).e
e2 ↪→ #z ⇒ b3

e[x := λx′.(b3[#z := x′])] ↪→ e4

e1 e2 ↪→ e4

e1 ↪→ e3 e2 ↪→ e4

(e1, e2) ↪→ (e3, e4)

e ↪→ (e3, e4)

π1 e ↪→ e3

e ↪→ (e3, e4)

π2 e ↪→ e4

e1 ↪→ e2

fk e1 ↪→ fk e2 λf∈F f xf .ef ↪→ λi∈F f xf .ef

#z ↪→ #z

e1 ↪→ e2

#z ⇒ e1 ↪→ #z ⇒ e2 λ(z ⇒ x).e ↪→ λ(z ⇒ x).e

e1 ↪→ #z
e2 ↪→ #z

e1 =# e2 ↪→ True()

e1 ↪→ #z1

e2 ↪→ #z2 z1 6= z2

e1 =# e2 ↪→ False()

e ↪→ #z

isOVar e ↪→ True()

e ↪→ v v 6= #z

isOVar e ↪→ False()

Figure 2: Big-Step Semantics (λD) of Core DALI

Finally, note that the breakdown of confluence here pro-
vides a concrete illustration of one of the wide range of diffi-
culties that can arise from mixing function spaces with “syn-
tax”. Other examples, such as the discussion of “covers” in
the context of MetaML implementation [15] require much
more infrastructure to present.

8.2 Soundness
We will consider two programs to be equivalent when they
can be interchanged in any context without affecting the
termination (or non-termination) of the full term in which
they occur. This is known as observational (or contextual)
equivalence, and is defined as follows:

Definition 2 (Observational Equivalence). We write
e1 ≈ e2 if and only if

∀C ∈ C. (∃v ∈ V. C[e1] ↪→ v)⇔ (∃v ∈ V. C[e2] ↪→ v)

Our soundness result can now be stated as simply:

Theorem 3 (Soundness).

∀e1, e2 ∈ E. e1 −→ e2 =⇒ e1 ≈ e2

First, our proof for this theorem is the first operational ac-
count known to us where the soundness of such reductions
for an untyped CBV functional language with datatypes is
established (Using bisimilarity techniques, Pitts does present
a similar result, but for a typed CBN language supporting
binary sum types [?].)

Second, the soundness of these results establishes that
extending the lambda calculus plus datatypes with DALI’s
constructs for introducing and analyzing object-level binders
and free variables at runtime does not injure the notion of
observational equivalence in a devastating way. Certainly,
it may very well be that introducing the new constructs
allows us to distinguish between more terms in the language
(as does introducing exceptions, for example), and this is a
question for future work.

8.2.1 Role in Design of DALI
The immediate technical benefit of this result is providing
technical justification for using the reductions as semantics-
preserving optimizations in an implementation. But there
are other benefits that we are interested in from the point
of view of language design:

1. It provides us with a basic understanding of the no-
tion of observational equivalence. In particular, in the
case of this language (as is in the case for many deter-
ministic languages), one arrives at a simple equational
theory simply be changing reduction arrows into “con-
vertibility” equalities.

2. Taha’s development[15; ?] emphasizes partitioning ex-
pressions into values, workables, and stucks, and estab-
lishing “monotonicity properties” from which, for ex-
ample, Wright and Felleissen’s “Uniform Evaluation”
[20] follows. Thus, not only do we provide the basis
for posing the question of “what is a type system for
datatypes with binder”, we already provide some of the
technical properties needed in establishing type safety
for any type system that we may wish to investigate.

3. Attaining this result involves constructing a number
of variations of the operational semantics, and relat-
ing them formally. This process provides a substantial
amount of cross-checking between various definitions,
and gives a very accurate operational understanding
of the kind of invariants that a type system will be
expected to guarantee.

9. RELATED WORK
DALI is a functional meta-programming language, and is
related as such, to many other meta-systems.

Meta-systems built with a functional programming base
include MetaML [?; 18], λ�[5] and λ©[4]. These differ from
DALI in that they are homogeneous systems, where the
meta- and object-languages are the same. None of these
systems provide mechanisms for analyzing the structure of
object-programs.



Theorem prover based meta-systems have been constructed
for several kinds of logics. Implementations of classical log-
ics include the HOL [?] theorem prover, Isabelle [?], and the
Prototype Verification System (PVS) [?]. Implementations
of constructive (or intuitionistic) logics include Elf [?], Coq
[?; ?], Nuprl [?] and Lego [?].

Finally, there are logic programming languages with meta-
programming extensions, λ-Prolog [?; ?; ?], and Lλ [?].
These are prolog-like languages with extensions for repre-
senting and analyzing object-programs whose representa-
tions are based on the λ-calculus.

Of these systems, Isabelle, Elf, λ-Prolog, and Lλ use
some sort of higher-order abstract syntax to represent object
terms. Of these, all but Lλ, use higher order unification to
implement intensional analysis of object terms. Higher order
unification is in general undecidable, and does not guarantee
a most general unifier.

Lλ implements a subset of lambda-Prolog, where inten-
sional analysis is syntactically restricted to a form which is
decidable using unification on higher-order patterns. It is
this idea transferred to the functional programming world
that is the basis for MLλ and DALI.

The term higher-order abstract syntax was originated by
Pfenning and Elliott [12]. This work provided a basis for
automating reasoning in LF[6], and was used as the basis
for the implementation of Pfenning’s Elf[?] and its successor
Twelf[?].

9.1 DALI vs. ML λ

Dale Miller [?] describes MLλ, a proposal to extend ML
to handle bound variables in data-types. The idea of repre-
senting object-level bindings, in a functional language, using
a binding construct different from the function abstraction
of the meta-language derives from this paper. While our
work takes Miller’s proposed extensions as its basis, there
are some differences:

• We distill the main ideas of Miller’s MLλ into a basic
calculus of core DALI. We concentrate on the the
reduction semantics and equational theories of such
a language. To the authors’ knowledge, this work is
the first instance of a sound reduction semantics for a
functional language supporting binding constructs in
data-types.

• We abandon the notion of function extension that al-
lows extending the domain of arbitrary ML functions
within the scope of an object-level variable. We find
function extension needlessly difficult to model in a re-
duction system, and seek to introduce an alternative
construct: patterns that match object-level variables.
We conjecture that, together with equality over object-
level variables, one can circumvent function extension
without loss of expressiveness or good programming
style.

• We abandon the notion of object-level application [?].
Rather, pattern matching on object-level bindings binds
higher-order pattern variables to functions that per-
form appropriate substitutions directly, thus further
simplifying formal development, and, in practical terms,

internalizing object-level variable substitution, which
in [?] must be defined separately for each data-type.

However, internalization of such object-level substitu-
tion in presence of extensional function values is not
without cost: we had to resort to a fine distinction be-
tween ground (or equality) values and the more stan-
dard notion of values in such calculi, and adjust eval-
uation and reduction to restrict the analysis of object-
language terms to preserve soundness and confluence
of the calculus.

DALI differs from most of the other work discussed above
in following ways:

• It is functional and deterministic, and is presented as
an extension of a standard CBV functional language.
It provides support for higher-order syntax by provid-
ing a small number of new language constructs.

• The formal properties we have proven about the lan-
guage suggest that the new features integrate well with
the host functional language.

• The reduction semantics we provide gives rise to a sim-
ple equational theory that can be used to reason about
program equivalence.

10. CONCLUSIONS AND FUTURE WORK
In this paper we have shown that a functional program-
ming language with support for higher order abstract syn-
tax through an additional object-level binding construct can
be assigned a simple big-step semantics. We have defined
a reduction semantics and presented important results of
confluence and soundness w.r.t. evaluation of this reduction
semantics for DALI. After this initial success much work
remains to be done. In particular:

• Developing a basic type system for DALI. In addition
to the traditional notions of safety there are some ef-
ficiency concerns that we expect that a type system
could be used to alleviate. In particular, the discharge
operation and the use of the ground-value restriction
b in the semantics would incur significant run-time
penalties in an implementation. We expect that an
appropriate type system could help avoid these.

• Integrating with multi-stage programming. In partic-
ular, DALI meta-programming utility is orthogonal to
that of multi-stage programming [17; 16; 16; 9; 2]:
with DALI, the object language is allowed to vary, and
intensional analysis is supported. Note, however, that
DALI does support the hygienic synthesis of object
code, although in a manner less concise than those of
multi-stage programming languages. Finally, whereas
it has been demonstrated that the former can guaran-
tee that the synthesized code is type correct, the only
guarantee that we have at the moment with DALI is
that the synthesized code is syntactically correct.

• An implementation of a full programming language en-
vironment based on DALI. Although a full implemen-
tation of DALI is missing at the moment, the mech-
anisms of higher-order pattern matching and analysis



of object-level bindings has been implemented by Tim
Sheard as an experimental feature of the MetaML in-
terpreter [?].

From the point of view of semantic language design, in
reproducing Taha’s technical development of MetaML, we
have found that all the proofs could be carried out in a
systematic manner for the (considerably larger) language
at hand, and that many of the proofs remain literally un-
changed. This seems to be primarily due to the use of the
notion of “workables” in parameterizing the various lem-
mata. In future work, we intend to investigate the extent to
which this development can be generalized.
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